Live your best life & take care
Collagen is a vital component of the skin's extracellular matrix, providing essential structural support and elasticity. Collagen-stimulating treatments, skincare products, and supplements have gained popularity for their effectiveness in gradual prejuvenation and rejuvenation approaches. These methods can help maintain skin health and combat signs of aging when used appropriately. However, it's important to note that excessive collagen stimulation can potentially lead to adverse effects, including fibrosis and skin stiffness, which may be detrimental to overall skin health and beauty. Therefore, a balanced and informed approach to collagen stimulation is crucial for achieving optimal results while minimizing potential risks. TYPES OF COLLAGEN AND THEIR ROLES 1. Type I collagen: Predominantly found in skin, tendons, and bones, providing tensile strength. 2. Type III collagen: Often found alongside Type I, contributing to skin elasticity and firmness. While these types are beneficial for youthful skin, excessive production can lead to fibrotic tissue formation and stiffness [1]. More about collagen types click here EXCESSIVE COLLAGEN STIMULATION Excessive collagen production, particularly type I collagen, can contribute to fibrosis and scarring in pathological conditions: 1. In hypertrophic scars, there is an overproduction of primarily type III collagen, which is later replaced by type I collagen. These scars contain "an overload of primarily type III collagen oriented parallel to the epidermal surface with multiple nodules containing myofibroblasts, large extracellular collagen filaments and abundant acidic mucopolysaccharides" [2]. 2. Many rejuvenating in-office treatments (for example energy based devices)are based on "controlled damage and repair”, thus wound healing. During wound healing, abnormal extracellular matrix (ECM) reconstruction, particularly abnormal collagen remodelling, leads to the formation of hypertrophic scars. In these scars, "thin collagen fibres with increased synthesis and crosslinks result in raised scars" [2]. 3. The relative ratio of type III to type I collagen is reduced in pathological scars compared to unscarred adult dermis. Additionally, hydroxylation of type I collagen was found to be significantly higher in keloids, leading to excessive collagen cross-linking [3]. IN-OFFICE TREATMENTS AND COLLAGEN STIMULATION These treatments aim to maintain or restore natural collagen production rather than overstimulate it to unnatural levels. Some examples are: 1. Exosomes and Polynucleotides: Aim to stimulate healthy collagen production but require careful application. 2. Radiofrequency and Ultrasound: Use heat to remodel collagen. While generally safe, a study by Zelickson et al. [4] reported that excessive heating during RF treatments could potentially lead to collagen denaturation and subsequent fibrosis if not properly controlled. 3. Microneedling: Promotes collagen production but risks scarring if not performed properly. A review by Iriarte et al. [5] noted that while microneedling is generally safe, excessive or improper use could potentially lead to scarring or hyperpigmentation. 4. Laser treatments: Excessive use of ablative lasers can potentially lead to scarring and fibrosis. A study by Hantash et al. [6] found that ablative fractional resurfacing can induce dermal remodeling and new collagen formation, but also noted that improper use could lead to adverse effects. It's important to emphasize that these potential adverse effects are typically associated with improper use, overtreatment, or individual susceptibility rather than being inherent risks of the treatments themselves when performed correctly. More research is needed to fully understand the long-term effects of repeated collagen stimulation treatments on skin structure and function. POTENTIAL RISKS ▌Excessive collagen production: Can lead to fibrosis, characterized by stiff, non-functional tissue: increased extracellular matrix deposition, with collagen being the main component, leading to a drastic reduction of tissue functionality [7]. In skin, this can result in reduced elasticity and increased stiffness. ▌Imbalance in collagen types: Overproduction of certain collagen types can lead to reduced skin elasticity and increased stiffness. The ratio of type I to type III collagen naturally increases with age, which is associated with changes in skin tension, elasticity, and healing [7]. RECOMMENDATIONS FOR SAFE USE ▌ Prejuvenation: Focus on treatments (performed by a professional) that promote balanced collagen production without overstimulation. The effect of a collagen-stimulating procedure is a gradual process and can take up to 12 weeks or longer before a final result. This gradual improvement is due to the time required for the body to produce new collagen in response to the stimulation. Laser treatments, for example, can trigger collagen synthesis deep within the skin, with effects continuing for several months post-treatment [8]. Leave sufficient time in between procedures. Support your skin with a skincare routine tailored to your skintype, goals and use of daily sunscreen. Be very rigorous when it comes to the use of home devices or treatments. Many of them are not well researched or might cause damage when not properly used or performed. ▌Rejuvenation: Opt for treatments or a combination of treatments that complement each other, working in different layers of the skin in different ways. Don't expect a "one-day transformation". Rebuilding collagen takes time and a consistent approach. The skin is not able to replenish what it lost over a period of many years in just a few days [9]. Support in-office collagen stimulating treatments with a good skincare regimen, daily use of sunscreen, healthy lifestyle and diet or supplementation if necessary [10]11]. The effectiveness of combining different treatments for skin rejuvenation has been demonstrated in clinical studies. For instance, a study published in the Journal of Clinical and Aesthetic Dermatology showed that a combination of microneedling and platelet-rich plasma significantly improved skin texture and collagen production compared to microneedling alone [12]. The importance of a consistent skincare regimen and sun protection in maintaining collagen levels has been well-documented. A review in the Archives of Dermatological Research highlighted that daily use of broad-spectrum sunscreen can prevent collagen degradation caused by UV radiation [13]. While collagen stimulation is beneficial for skin prejuvenation, "banking" or rejuvenation, it is crucial to balance its production to avoid the formation of fibrotic tissue and maintain healthy skin elasticity. Further research is needed to optimize treatment protocols and minimize risks associated with excessive collagen stimulation. Always consult a qualified healthcare professional to determine the most suitable approach for your skin goals, health, and beauty. Take care Anne-Marie References: [1] Wang Kang , Wen Dongsheng , Xu Xuewen , Zhao Rui , Jiang Feipeng , Yuan Shengqin , Zhang Yifan , Gao Ya , Li Qingfeng Extracellular matrix stiffness—The central cue for skin fibrosis Frontiers in Molecular Biosciences 2023 DOI=10.3389/fmolb.2023.1132353 [2] Meirte J, Moortgat P, Anthonissen M, Maertens K, Lafaire C, De Cuyper L, Hubens G, Van Daele U. Short-term effects of vacuum massage on epidermal and dermal thickness and density in burn scars: an experimental study. Burns Trauma. 2016 Jul 8;4:27. doi: 10.1186/s41038-016-0052-x. PMID: 27574695; PMCID: PMC4964043. [3] Zhou Claire Jing , Guo Yuan Mini review on collagens in normal skin and pathological scars: current understanding and future perspective Frontiers in Medicine 2024 [4] Zelickson, B. D., Kist, D., Bernstein, E., Brown, D. B., Ksenzenko, S., Burns, J., ... & Kilmer, S. (2004). Histological and ultrastructural evaluation of the effects of a radiofrequency‐based nonablative dermal remodeling device: a pilot study. Archives of Dermatology, 140(2), 204-209. [5] Iriarte, C., Awosika, O., Rengifo-Pardo, M., & Ehrlich, A. (2017). Review of applications of microneedling in dermatology. Clinical, Cosmetic and Investigational Dermatology, 10, 289-298. [6] Hantash, B. M., Bedi, V. P., Kapadia, B., Rahman, Z., Jiang, K., Tanner, H., ... & Zachary, C. B. (2007). In vivo histological evaluation of a novel ablative fractional resurfacing device. Lasers in Surgery and Medicine, 39(2), 96-107. [7] Wang, C., Rong, Y., Ning, F., & Zhang, G. (2011). The content and ratio of type I and III collagen in skin differ with age and injury. African Journal of Biotechnology, 10(13), 2524-2529. https://doi.org/10.5897/AJB10.1999 [8] Alam, M., Hughart, R., Champlain, A., Geisler, A., Paghdal, K., Whiting, D., Hammel, J. A., Maisel, A., Rapcan, M. J., West, D. P., & Poon, E. (2018). Effect of Platelet-Rich Plasma Injection for Rejuvenation of Photoaged Facial Skin: A Randomized Clinical Trial. JAMA Dermatology, 154(12), 1447-1452. https://doi.org/10.1001/jamadermatol.2018.3977 [9] Ganceviciene, R., Liakou, A. I., Theodoridis, A., Makrantonaki, E., & Zouboulis, C. C. (2012). Skin anti-aging strategies. Dermato-endocrinology, 4(3), 308-319. https://doi.org/10.4161/derm.22804 [10] Katta, R., & Desai, S. P. (2014). Diet and dermatology: the role of dietary intervention in skin disease. The Journal of clinical and aesthetic dermatology, 7(7), 46-51. [11] Addor, F. A. S. (2017). Antioxidants in dermatology. Anais brasileiros de dermatologia, 92, 356-362. https://doi.org/10.1590/abd1806-4841.20175697 [12] Asif, M., Kanodia, S., & Singh, K. (2016). Combined autologous platelet-rich plasma with microneedling verses microneedling with distilled water in the treatment of atrophic acne scars: a concurrent split-face study. Journal of Cosmetic Dermatology, 15(4), 434-443. https://doi.org/10.1111/jocd.12207 [13] Battie, C., & Verschoore, M. (2012). Cutaneous solar ultraviolet exposure and clinical aspects of photodamage. Indian Journal of Dermatology, Venereology, and Leprology, 78, S9-S14. https://doi.org/10.4103/0378-6323.97351
Comments
12/7/2024 Comments Collagen bankingCollagen banking is a proactive skincare strategy falling under the category prejuvenation aimed at preserving and stimulating collagen production to maintain youthful, firm and excellent skin quality over time. This approach can involve using various treatments, tweakments, products, supplements and lifestyle choices to boost collagen levels before significant signs of aging appear. The goal is to build a "reserve" or “bank” of collagen, ensuring skin remains resilient and less prone to wrinkles and sagging as natural collagen production declines and degradation increases with age. To start banking collagen as early as in your twenties makes sense, as the producing cell called the dermal fibroblast is still very healthy and active. Moreover as the loss is not yet so great (just a few percent loss), thus less invasive methods work well to maintain a youthful status quo. I´s never too late to start “banking” collagen, although when you are more mature, the word rejuvenation might be more suitable. There is no direct scientific evidence that collagen stimulation is more effective in your twenties than in your sixties. However, starting collagen stimulation earlier may be beneficial: ▌Collagen production begins to decline around age 25-30, decreasing by about 1% per year. ▌By the 50s and beyond, the collagen loss is greater >30%, becomes more noticeable and it´s always harder to get back what you lost than to maintain what you have. ▌Peak collagen levels occur at twenty years of age, thus maintaining what you have the highest achievable level. ▌Starting collagen stimulation treatments earlier may help prevent further collagen loss and require less invasive and number of treatments. WHAT IS COLLAGEN Collagen is the most abundant protein in the human body, making up about one-third of all proteins. 1. Location: Found in connective tissues, including skin, tendons, bones, and cartilage. 2. Function: Provides structural support, strength, and elasticity to tissues. 3. Production: Naturally produced by the body, but production decreases with age, starting around the mid-20s. Collagen plays a crucial role in maintaining skin elasticity, joint health, and overall tissue integrity. As collagen production declines with age, so does the skin quality, leading to visible signs of aging like wrinkles, loss of elasticity and firmness, and sagging skin. Collagen is one of the key target components for noticeable and effective skin rejuvenation or regeneration. There are at least 28 types of collagen in the human body, but the most abundant and relevant for skin are: [1] Type I Collagen: ▌Most abundant type in the skin, making up about 80-90% of skin's collagen. ▌Provides tensile strength and structure to the skin. ▌Maintains skin elasticity and firmness. Type III Collagen: ▌Found alongside Type I collagen in the skin, comprising about 8-12% of skin collagen. ▌Contributes to skin firmness and elasticity. ▌Important in early stages of wound healing and fetal development. Type IV Collagen: ▌Found in the basement membrane of the skin. ▌Provides support and filtration in the basement membranes. ▌Crucial for overall skin health and function. Type V and VI Collagen: ▌Present in smaller amounts in the skin. ▌Support skin health and collagen fibril formation. Collagen is primarily composed of three key amino acids: ▌Glycine: is the most abundant, contributing significantly to collagen's structure and stability ▌ Proline ▌ Hydroxyproline Proline and hydroxyproline are crucial for forming the triple-helix structure of collagen, which provides strength and flexibility. Additionally, essential amino acids like lysine play a critical role in collagen synthesis by forming hydroxylysine, important for stabilizing collagen fibers. A balanced intake of these amino acids is vital for maintaining healthy collagen levels in the body. COLLAGEN DECLINE Collagen production begins to diminish naturally in our mid-20s, decreasing by about 1% per year [2]. This decline becomes more pronounced in the 40s and 50s, contributing to visible signs of aging such as wrinkles and sagging skin [2]. Factors influencing collagen loss include genetic predisposition (DNA), changes in epigenetic pattern (influenced by environment), hormonal changes (especially post-menopause), and fibroblast aging [2][3]. Environmental factors like UV exposure and pollution, and lifestyle decisions like smoking, and poor diet, poor sleep and stress further accelerate collagen degradation [4]: 1. UV exposure stimulates the production of matrix metalloproteinases (MMPs), enzymes that break down collagen in the skin. 2. Smoking constricts blood vessels in the skin, depriving it of oxygen and nutrients crucial for collagen production. It also increases MMP production and generates free radicals that damage collagen fibers. 3. Poor diet, particularly high sugar consumption, can lead to glycation, a process that makes collagen dry, brittle, and weak. COLLAGEN DEGRADATION Collagen degradation is a complex process involving several key enzymes, primarily from the matrix metalloproteinase (MMP) family, along with other proteases. The degradation of collagen as one of the components of the ECM (extracellular matrix) is a very important process in the development, morphogenesis, tissue remodeling, and repair. 1. Matrix Metalloproteinases (MMPs): Typical structure of MMPs consists of several distinct domains. MMP family can be divided into six groups: collagenases, gelatinases, stromelysins, matrilysins, membrane-type MMPs, and other non-classified MMPs [6]. ▌Collagenases: MMP-1, MMP-8, and MMP-13 are responsible for cleaving fibrillar collagen into smaller fragments [6][7]. ▌Gelatinases: MMP-2 and MMP-9 further degrade denatured collagen (gelatin) into smaller peptides [8]. ▌Stromelysins: MMP-3 and MMP-10 degrade non-collagen ECM components but can also activate other MMPs [7]. ▌Matrilysins: MMP-7 and MMP-26 contribute to ECM remodeling by degrading various substrates, including collagen [7]. 2. Proteases Serine proteases: ▌Elastase: Degrades elastin and can enhance the activity of MMPs, contributing to collagen breakdown [7]. Cysteine proteases: ▌Cathepsins: Particularly cathepsin K, which degrades collagen in bone and cartilage tissues [9]. Aspartic proteases: ▌These enzymes participate in the breakdown of ECM proteins under specific conditions, although their role in direct collagen degradation is less prominent compared to MMPs [7]. Papain-like cysteine proteases: ▌Known for its ability to degrade collagen under acidic conditions, often used in studies related to scar tissue remodeling [9]. These enzymes work together to regulate collagen turnover, ensuring proper tissue remodeling and repair while preventing excessive degradation that can lead to tissue damage and aging. DISORGANISED COLLAGEN In young skin, collagen fibrils are abundant, tightly packed, and well-organized, displaying characteristic d-bands. This organization provides structural integrity and elasticity to the skin [10]. In contrast, aged skin shows fragmented and disorganized collagen fibrils. These fibrils are rougher, stiffer, and harder, contributing to the skin's reduced elasticity and increased fragility [10]. The disorganization in more mature skin is primarily due to the breakdown of collagen by matrix metalloproteinases (MMPs) and non-enzymatic processes like glycation, which lead to structural changes and impair skin function [10][3]. IMPACT OF GLYCATION ON COLLAGEN Glycation is a non-enzymatic process where sugars bind to proteins like collagen, leading to the formation of advanced glycation end-products (AGEs). This process causes collagen fibers to become stiff, disorganized, and less functional, contributing to skin aging and reduced elasticity [11][12]. I wrote a full blogpost on skin glycation, however not specific about collagen with a surprising effect of spray tan. Read more. Prevention and treatment of glycation [13][14][15] 1. Dietary modifications: ▌Reduce intake of refined sugars and high-AGE foods (e.g., fried and processed foods). ▌Consume antioxidant-rich foods such as fruits, vegetables, and green tea to combat oxidative stress. 2. Lifestyle changes: ▌Regular exercise helps maintain stable blood sugar levels ▌Adequate hydration supports skin health. 3. Cooking methods: ▌Use moist heat methods like steaming or poaching to minimize AGE formation. 4. Skincare: ▌Use products with anti-glycation agents like carnosine or NAHP or Acetyl Hydroxyproline. ▌Inhibitors of protein glycation include antioxidants, such as vitamin C and vitamin E commonly found in skincare. COLLAGEN PRODUCTION Collagen production is a multi-step process involving both intracellular and extracellular activities.
SKINCARE INGREDIENTS THAT STIMULATE COLLAGEN PRODUCTION 1. Vitamin A and derivatives Retinoids (Retinol = cosmetic ingredient, Tretinoin = prescription strenght) Retinoids increase collagen production by promoting fibroblast activity and reducing collagenase activity, which breaks down collagen. This is a dose-dependant effect. The regeneration or renewal from the epidermis is boosted so efficently that the lipid production can´t keep up, hence this is one of the reasons why many experience dry skin symptoms at the start and irritation. Lipids are like the morter between the bricks of the skin barrier. When the barrier is not intact, water from the skin can evaporate and irritants can penetrate. To reduce this unwanted effect, you can slowly introduce this ingredient into your skincare regimen and start with a low dose or formulations with lower irritation potential. Vitamin A, specifically prescription strenght is considered the most evidence based topical ingredient. 2. Vitamin C (Ascorbic Acid) Vitamin C, also known as ascorbic acid, plays a crucial role in collagen synthesis and maintenance, significantly influencing skin health and structural integrity. Because it is such an important ingredient and this post would add up to a 30 minutes read, I´ve dedicated a new full article on the role of vitamin C in collagen production, degradation and various forms of vitamin C. Click here. 3. Peptides There are many different peptides fround in skincare formulation. We can identify the following main types by function: 1. Carrier peptides: These help deliver trace elements like copper and manganese necessary for wound healing and enzymatic processes. 2. Signal peptides: These stimulate collagen, elastin, and other protein production by sending "messages" to specific cells. 3. Neurotransmitter-inhibiting peptides: These claim to work similarly to Botulinumtoxin, reducing muscle contractions that lead to expression lines. 4. Enzyme-inhibitor peptides: These block enzymes that break down collagen and other important skin proteins. 5. Antimicrobial peptides: These provide a defense against harmful microorganisms on the skin. 6. Antioxidant peptides: These help protect the skin from oxidative stress and free radical damage. Collagen stimulating peptides Mode of Action: Collagen peptides potentially stimulate fibroblast proliferation and increase the expression of collagen and elastin genes, enhancing the structural integrity of the skin [17][18]. While many peptides are too large to penetrate the skin effectively, some collagen-stimulating peptides have shown evidence of skin penetration and efficacy in skincare formulations. 1. Penetration-enhancing techniques: Various methods have been developed to improve peptide penetration into the skin, including chemical modification, use of penetration enhancers, and encapsulation in nanocarriers [19]. 2. Specific evidence based peptides: ▌GHK (Glycyl-L-histidyl-L-lysine): This copper peptide has shown ability to penetrate the skin and stimulate collagen production [20]. ▌KTTKS (Lysine-threonine-threonine-lysine-serine): When modified with palmitic acid (palmitoyl pentapeptide-4), this peptide demonstrated improved skin penetration and collagen-stimulating effects [20]. ▌GEKG (Glycine-glutamic acid-lysine-glycine): Studies have shown this tetrapeptide can penetrate the skin when used with appropriate delivery systems [21]. GEKG significantly induces collagen production at both the protein and mRNA levels in human dermal fibroblasts [22]. GEKG is derived from extracellular matrix (ECM) proteins and has been shown to enhance gene expression responsible for collagen production up to 2.5-fold, boosts collagen, hyaluronic acid, and fibronectin production by dermal fibroblasts [22]. ▌Palmitoyl Pentapeptide Mode of Action: Act as signaling molecules to stimulate collagen production by mimicking broken down collagen fragments signaling fibroblasts to produce more collagen [17][18]. Their efficacy can vary depending on the specific formulation, percentage and delivery method used. More about peptides click here 4. Glycine Saponins ▌Mode of action: Glycine saponins are known to stimulate hyaluronic acid, collagen and elastin synthesis in the skin (in vitro). 5. Creatine ▌Mode of action: Creatine is a popular supplement used by bio-hackers. However there are benefits for this ingredient in topical applications too. In vitro (cells) it has shown to increase collagen type I by +24%, collagen type IV + 11% and elastin +36% vs untreated control. 7. Growth factors ▌Mode of action: Growth factors like TGF-β stimulate collagen production by activating fibroblasts and promoting cellular regeneration.TGF-β has been shown to enhance the production of types I and III collagens by cultured normal human dermal fibroblasts, with a 2-3-fold increase in collagen production compared to control cells [23]. 8. Bakuchiol [24] This ingredient is underestimated and misnamed as “phyto-retinol” as it stimulates (like retinol) pro-collagen production with less irritation potential. However this is where the comparison stops. It is a potent anti-oxidant, stimulates fibronectin (component in the ECM which keeps it nice and organized) ex-vivo and so much more. Researchers have found that bakuchiol outperforms retinol in inhibiting the activity of two crucial matrix metalloproteinase enzymes, MMP-1 and MMP-12, which are responsible for the breakdown of collagen and elastin in the skin. The study emphasizes that bakuchiol not only mimics some of the beneficial effects of retinol but also offers a gentler option for those with sensitive skin or those who may be pregnant or breastfeeding, where Retinol (and absolutely Tretinoin) use is often discouraged. Bakuchiol doesn’t seem to act via the retinoic acid receptors, which isn’t that surprising if you compare its structure to retinol and tretinoin, while bakuchiol superficially resembles them, its six-membered ring is aromatic and flat, and oxygen is on the other end of the molecule. 9. Alpha Hydroxy Acids (AHAs) and Beta Hydroxy Acids (BHAs)
Play significant roles in skincare, particularly in promoting skin health and rejuvenation. Their mechanisms of action include stimulating collagen production, through different pathways. Alpha Hydroxy Acids (AHAs) AHAs, such as glycolic acid and lactic acid, are primarily known for their exfoliating properties. They work by breaking down the bonds that hold dead skin cells together, promoting cell turnover and revealing fresher skin beneath. However, AHAs also have a direct impact on collagen production: 1. Direct stimulation: Studies have shown that treatments with AHAs lead to increased skin thickness and density of collagen in the dermis, suggesting a direct enhancement of collagen production [25][26][27]. 2. Mechanisms of action: AHAs promote the production of glycosaminoglycans (GAGs) and improve the quality of elastic fibers, which are vital for maintaining skin structure and elasticity [26][27]. Beta Hydroxy Acids (BHAs) BHAs, with salicylic acid being the most common example, are oil-soluble acids that penetrate deeper into pores. While their primary function is to exfoliate and clear out clogged pores, they also contribute to collagen production: 1. Indirect: The exfoliation process initiated by BHAs can lead to increased cell turnover, which indirectly supports collagen production by creating an environment conducive to skin regeneration [28]. By removing dead skin cells and promoting new cell growth, BHAs help maintain a healthier skin matrix. 2. Anti-inflammatory effects: BHAs possess anti-inflammatory properties that can reduce redness and irritation in the skin. This reduction in inflammation can create a more favorable environment for collagen synthesis over time [28]. 10. Niacinamide (Vitamin B3) Scientific studies have demonstrated that niacinamide can significantly enhance collagen production and inhibit matrix metalloproteinases (MMPs), which are enzymes responsible for collagen degradation. 1. Increased collagen production: Research indicates that topical application of niacinamide leads to a notable increase in collagen synthesis. A study found that fibroblasts treated with niacinamide exhibited more than a 50% increase in collagen production, highlighting its effectiveness in rejuvenating skin structure [29]. 2. Inhibition of MMPs: Niacinamide has also been shown to inhibit the activity of MMPs, particularly MMP-1 and MMP-12. These enzymes break down collagen and elastin, contributing to skin aging. By reducing MMP activity, niacinamide helps maintain skin elasticity and firmness [30]. 3. Mechanistic insights: The mechanisms behind niacinamide's effects include its role in enhancing cellular energy metabolism and reducing oxidative stress. Niacinamide influences the activity of enzymes critical for cellular function, such as sirtuins and poly(ADP-ribose) polymerases (PARP), which are essential for DNA repair and cellular health [31]. Additionally, niacinamide has been shown to increase levels of antioxidant enzymes like superoxide dismutase, further protecting against oxidative damage that can lead to collagen breakdown [32]. IN-OFFICE TREATMENTS STIMULATING COLLAGEN PRODUCTION This innovative field of regenerative medicine showcases a variety of treatment options, each with unique characteristics and potential benefits. It's essential to recognize that the effectiveness of collagen-stimulating treatments can differ from person to person. For the best outcomes, a combination of methods may be suggested. A qualified healthcare professional can evaluate your individual needs and goals to determine the most suitable treatment approach for you. 1. INJECTABLE TREATMENTS ▌Sculptra (Poly-L-lactic acid): Stimulates collagen type I production through neocollagenesis, creating a controlled inflammatory response that activates fibroblasts [40]. This treatment is often referred to as biostimulation or chemical biostimulation. Key points about Sculptra and collagen stimulation: 1. Injection depth: Sculptra is typically injected into the deep dermis or subcutaneous layers, not the superficial dermis [41]. 2. Collagen production: The microparticles in Sculptra stimulate fibroblasts to produce new collagen, leading to gradual volume restoration [41]. 3. Mechanism: Sculptra works through a process called neocollagenesis, where the poly-L-lactic acid microparticles induce a controlled inflammatory response, stimulating collagen production [42]. 4. Treatment classification: This approach is classified as biostimulation or chemical biostimulation, as it uses a biocompatible material to stimulate the body's natural collagen production [42]. 5. Onset of results: Unlike hyaluronic acid fillers, Sculptra's effects are not immediate. Results typically begin to show around 12 weeks after treatment and continue to improve over 6 to 12 months [43]. 6. Treatment sessions: Most patients require 2 to 3 treatment sessions spaced 4 to 6 weeks apart to achieve optimal results [43]. Sculptra primarily stimulates Type I collagen production in the skin. According to peer-reviewed research: 1. Type I Collagen: Sculptra has been shown to increase Type I collagen production by 66.5% after 3 months of treatment [44]. 2. Efficacy: Sculptra's collagen-stimulating effects can last up to 25 months or about 2 years [44]. ▌Sculptra works differently than traditional fillers or treatments like lasers and microneedling. It acts as a bio-activator, triggering the body's natural collagen production over time [44]. ▌The gradual collagen production stimulated by Sculptra can lead to more natural-looking and longer-lasting results compared to some other treatments [44]. ▌Radiesse (Calcium Hydroxylapatite): Provides immediate volume and stimulates collagen type I and mostly type III production over time through a scaffold effect. ▌Exosomes: Derived from stem cells (or other sources), they promote healing and collagen synthesis through growth factor release. ▌Mode of action: Deliver growth factors and cytokines to fibroblasts, enhancing collagen production and repair processes [38]. ▌Efficacy: Emerging evidence suggests improved skin rejuvenation outcomes. ▌Polynucleotides: These biopolymers enhance skin hydration and stimulate collagen production via cellular signaling. ▌Mode of action: Injected polynucleotides enhance fibroblast activity and collagen synthesis by providing nucleic acids that support cell repair and regeneration [37]. ▌Efficacy: Improves skin hydration and elasticity over time. ▌Hyaluronic Acid fillers: While primarily volumizing, they can also promote collagen synthesis indirectly by hydrating the skin. 2. ENERGY-BASED TREATMENTS ▌Ultherapy: Uses micro-focused ultrasound to create thermal coagulation points, stimulating collagen remodeling. ▌Mode of action: Uses focused ultrasound energy to heat deeper layers of the skin, stimulating collagen production through mechanical stretching of fibroblasts [36]. ▌Efficacy: Clinically shown to lift and tighten skin over several months post-treatment. ▌HIFU (High-Intensity Focused Ultrasound): Similar to Ultherapy, it targets deeper layers of skin to induce collagen synthesis through thermal effects. ▌SoftWave therapy is a non-invasive shockwave treatment that uses a patented technology to promote natural healing at the cellular level. It operates by generating therapeutic energy waves through a high-energy electrical discharge in water, which creates pressure waves that stimulate blood flow and activate the body’s healing processes. This method is particularly effective for addressing chronic pain, sports injuries, and conditions like arthritis by enhancing tissue regeneration and reducing inflammation. ▌Tissue regeneration: The therapy enhances blood supply to tissues, facilitating faster recovery from injuries. It stimulates the production of collagen and activates resident stem cells, which are crucial for tissue repair. ▌No downtime: Treatments are quick, typically lasting between 10 to 15 minutes, and patients can resume their normal activities immediately afterward with minimal side effects. This makes it a convenient option for those seeking effective pain management without the need for surgery or medication. ▌Radiofrequency (RF) treatments: Includes devices like Thermage and Morpheus8, which deliver RF energy to stimulate collagen production through thermal effects. ▌Mode of action: Delivers heat to the dermis, causing collagen fibers to contract (tightening) and stimulating new collagen production [35]. ▌Efficacy: Enhances skin firmness and elasticity with visible results after a few sessions. ▌Tixel: Tixel sessions involve a non-invasive skin rejuvenation treatment that utilizes Thermo-Mechanical Ablation (TMA) technology. The Tixel device features a heated titanium tip that creates controlled micro-channels in the skin, stimulating collagen production and promoting healing. ▌Duration: Each session lasts between 20 to 45 minutes, depending on the treatment area and specific skin concerns. ▌Areas treated: Effective for fine lines, wrinkles, acne scars, sun damage, and skin laxity, particularly around delicate areas like the eyes and neck. ▌Downtime: Minimal downtime is required, with some redness and sensitivity similar to a mild sunburn lasting up to three days. ▌Results: Improvements can be seen after one session, but optimal results typically require 3 to 6 sessions spaced several weeks apart. 3. LASER TREATMENTS ▌Ablative lasers (e.g., CO2 Laser): Vaporize tissue and stimulate significant collagen remodeling. ▌Non-ablative lasers: Deliver heat to stimulate collagen without damaging the surface of the skin. ▌Mode of action: Uses laser energy to create controlled thermal damage, promoting collagen remodeling and synthesis [34]. ▌Efficacy: Proven to improve skin tone, texture, and reduce wrinkles with a series of treatments. ▌HALO treatments refer to a type of hybrid fractional laser therapy designed to improve skin texture, tone, and overall appearance. The HALO laser combines two types of wavelengths: 1. Ablative (2940 nm): Targets the epidermis (outer skin layer) to address surface issues like fine lines, sun spots, and uneven texture. 2. Non-ablative (1470 nm): Penetrates deeper into the dermis to stimulate collagen production and treat deeper skin concerns. ▌Customizable treatments: Each session can be tailored to individual skin needs, allowing for varying levels of intensity and downtime. ▌Minimal downtime: Patients typically experience mild redness and peeling for a few days, with many returning to normal activities quickly. ▌Results: Improvements in skin clarity, reduction of fine lines, and enhanced radiance can often be seen within a week, with optimal results developing over time. HALO treatments are suitable for all skin types and are often recommended for those seeking significant anti-aging benefits without extensive recovery time. Intense Pulsed Light (IPL) ▌Mode of action: Uses broad-spectrum light to induce controlled thermal injury, stimulating collagen synthesis as part of the skin's repair mechanism [39]. ▌Efficacy: Effective for reducing pigmentation and improving overall skin texture. 4. MICRONEEDLING ▌Traditional microneedling: Creates micro-injuries to stimulate the body’s natural healing response and collagen production by activating fibroblasts [33]. ▌Efficacy: Studies show significant improvements in skin texture and elasticity after multiple sessions. ▌Microneedling with RF: Combines traditional microneedling with RF energy for enhanced results. 5. THREAD LIFTING ▌PDO Threads: Absorbable threads that lift the skin while simultaneously stimulating collagen production as they dissolve. 6. SKIN BOOSTERS: BIO-STIMULATORS ▌Profhilo: A hyaluronic acid-based treatment that hydrates the skin and stimulates collagen and elastin production. ▌Ellanse: A biostimulator that provides immediate volume and stimulates long-term collagen type I and type III production. 7. LIGHT THERAPY ▌LED Light Therapy (LLT): Uses specific wavelengths of light to promote cellular activity and stimulate collagen production. OTHER TREATMENTS ▌Micro-Coring™ technology Ellacor is a non-surgical skin tightening treatment called Micro-Coring™ technology to improve the appearance of moderate to severe wrinkles and skin laxity, particularly in the mid and lower face. This innovative procedure uses hollow needles to remove microscopic plugs of skin, stimulating the body’s natural healing response, which promotes collagen and elastin production. ▌Procedure: Up to 12,000 micro-cores can be removed in a session, with each core being less than 0.5 mm in diameter, minimizing the risk of scarring. ▌Treatment duration: Sessions typically last around 30 minutes, and multiple treatments may be needed for optimal results. ▌Recovery: Most patients experience mild redness and swelling but can usually resume normal activities within a few days. Ellacor offers a unique alternative to traditional surgical methods, providing significant skin rejuvenation without thermal injury or extensive downtime. ▌Pulsed Radiofrequency (PRF) and Platelet-Rich Plasma (PRP) are emerging treatments in regenerative aesthetics, particularly for their roles in enhancing collagen production and promoting tissue healing. Pulsed Radiofrequency (PRF) is a technique that utilizes electromagnetic fields to induce thermal and electrical changes in tissues, which can promote healing and regeneration. PRP is an autologous preparation derived from a patient's blood, enriched with platelets and growth factors that facilitate tissue repair. 1. Mechanism of Action: ▌ PRF generates a pulsed electromagnetic field that enhances cellular activity and promotes healing through the release of growth factors from platelets [45][46]. ▌PRP contains a high concentration of platelets that release various growth factors, such as platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF), which are essential for tissue regeneration [46][47]. 2. Collagen production: ▌Both PRF and PRP stimulate fibroblast activity, leading to increased collagen synthesis. Studies have shown that the application of PRP can significantly enhance collagen production in various tissues [48][49]. 3. Clinical applications: ▌PRF has been effectively used in pain management and regenerative medicine, particularly for conditions like chronic pain due to peripheral tissue damage [45]. ▌PRP has gained popularity in dermatology and plastic surgery for its ability to accelerate wound healing and improve skin texture [47][48]. 4. Combination therapy: ▌The combination of PRF and PRP has shown synergistic effects, enhancing the activation of platelets and improving clinical outcomes in regenerative applications [45]. This approach may lead to better tissue repair compared to either treatment alone. 5. Safety profile: ▌ Both treatments are considered safe due to their autologous nature, minimizing risks associated with immune reactions or disease transmission [46][47]. 6. Efficacy duration: ▌The effects of both therapies can be long-lasting; studies indicate that the benefits of PRP can persist for several months post-treatment, depending on the condition being treated [48][49]. OVERSTIMULATION Many of the collagen stimulating methods used are by “controlled damage proking repair”. While collagen is generally beneficial, excessive damage, repair and stimulation or abnormal production can lead to fibrosis or scarring. Read more. Prevent potential adverse effects: 1. Use FDA-approved devices and treatments 2. Seek treatment from qualified professionals 3. Follow recommended treatment intervals 4. Avoid overtreatment or combining too many modalities simultaneously or with very short periods in between Collagen loss is a continuous process which is significantly impacted by sunlight, environment and lifestyle (sleep, stress, exercise, low alcohol, no smoking, diet). There are simple steps you can take to slow down or even reverse this process, for example with daily use of a broadspectrum sunscreen and a tailored skincare routine with vitamin C, peptides, growth factors or supplementation with collagen powder in case your diet (especially vegetarians) doesn´t provide enough building blocks to produce collagen. Always consult a qualified healthcare professional to determine what the most suitable approach is for your skin health and beauty. Take care Anne-Marie References [1] Ricard-Blum, S. (2011). The collagen family. Cold Spring Harbor Perspectives in Biology, 3(1), a004978. https://doi.org/10.1101/cshperspect.a004978 [2] Shuster S, Black MM, McVitie E. "The influence of age and sex on skin thickness, skin collagen and density." British Journal of Dermatology. 1975;93(6):639-643. doi:10.1111/j.1365-2133.1975.tb05113.x. [3] Varani J, Dame MK, Rittie L, Fligiel SE, Kang S, Fisher GJ, Voorhees JJ. Decreased collagen production in chronologically aged skin: roles of age-dependent alteration in fibroblast function and defective mechanical stimulation. Am J Pathol. 2006 Jun;168(6):1861-8. doi: 10.2353/ajpath.2006.051302. PMID: 16723701; PMCID: PMC1606623. [4] Farage MA, Miller KW, Elsner P, Maibach HI. Aging Clin Exp Res. 2008;20(3):195-204. doi:10.1007/BF03020230. [6] Jabłońska-Trypuć, A., Matejczyk, M., & Rosochacki, S. (2016). Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(sup1), 177–183. https://doi.org/10.3109/14756366.2016.1161620 [7] Ledwoń P, Papini AM, Rovero P, Latajka R. Peptides and Peptidomimetics as Inhibitors of Enzymes Involved in Fibrillar Collagen Degradation. Materials (Basel). 2021 Jun 10;14(12):3217. doi: 10.3390/ma14123217. PMID: 34200889; PMCID: PMC8230458. [8] Reilly DM, Lozano J. Skin collagen through the lifestages: importance for skin health and beauty. Plast Aesthet Res. 2021;8:2. http://dx.doi.org/10.20517/2347-9264.2020.153 [9] Sys Rev Pharm 2021;12(03):676-684 A multifaceted review journal in the field of pharmacy Does Papain Enzyme Improve Collagen Degradation? Herman Y. L. Wihastyoko et al. [10] He T, Fisher GJ, Kim AJ, Quan T. Age-related changes in dermal collagen physical properties in human skin. PLoS One. 2023 Dec 8;18(12):e0292791. doi: 10.1371/journal.pone.0292791. PMID: 38064445; PMCID: PMC10707495. Age-related changes in dermal collagen physical properties in ... https://pmc.ncbi.nlm.nih.gov/articles/PMC10707495/ [11]Trujillo, J., & Galligan, J. J. (2024). An overview on glycation: molecular mechanisms, impact on biomolecules, and related diseases. Glycoconjugate Journal. https://doi.org/10.1007/s10719-024-10254-y [12]Sadowska-Bartosz, I., & Bartosz, G. (2022). Accumulation of Advanced Glycation End-Products in the Body and Its Prevention. Nutrients, 14(19), 4072. https://doi.org/10.3390/nu14194072 [13] Sadowska-Bartosz, I., & Bartosz, G. (2015). Prevention of protein glycation by natural compounds. Molecules, 20(2), 3309-3334. [14] Uribarri, J., et al. (2015). Dietary advanced glycation end products and their role in health and disease. Advances in Nutrition, 6(4), 461-473. [15] Guilbaud, A., et al. (2016). How can diet affect the accumulation of advanced glycation end-products in the human body? Foods, 5(4), 84. [16] Wu, M., Cronin, K., & Crane, J. (2023). Biochemistry, Collagen Synthesis. In StatPearls [Internet]. StatPearls Publishing. Available from: https://www.ncbi.nlm.nih.gov/books/NBK507709/ [17] Edgar, S., Hopley, B., Genovese, L. et al. Effects of collagen-derived bioactive peptides and natural antioxidant compounds on proliferation and matrix protein synthesis by cultured normal human dermal fibroblasts. Sci Rep 8, 10474 (2018). https://doi.org/10.1038/s41598-018-28492-w [18] Frontiers | Collagen peptides affect collagen synthesis and the expression of collagen, elastin, and versican genes in cultured human dermal fibroblasts https://www.frontiersin.org/journals/medicine/articles/10.3389/fmed.2024.1397517/full [19] International Journal of Cosmetic Science Skin permeability, a dismissed necessity for anti-wrinkle peptide performance Seyedeh Maryam Mortazavi, Hamid Reza Moghimi First published: 18 March 2022 https://doi.org/10.1111/ics.12770 [20] Pickart L, et al. GHK Peptide as a Natural Modulator of Multiple Cellular Pathways in Skin Regeneration. Biomed Res Int. 2015;2015:648108. doi:10.1155/2015/648108. [21] Binder L, et al. Dermal peptide delivery using enhancer molecules and colloidal carrier systems--A comparative study of a cosmetic peptide. Int J Pharm. 2018;557:36-46. doi:10.1016/j.ijpharm.2018.08.019. [22] https://pubmed.ncbi.nlm.nih.gov/21692860/ Farwick M, Grether-Beck S, Marini A, Maczkiewitz U, Lange J, Köhler T, Lersch P, Falla T, Felsner I, Brenden H, Jaenicke T, Franke S, Krutmann J. Bioactive tetrapeptide GEKG boosts extracellular matrix formation: in vitro and in vivo molecular and clinical proof. Exp Dermatol. 2011 Jul;20(7):602-4. doi: 10.1111/j.1600-0625.2011.01307.x. PMID: 21692860. [23] Ignotz, R. A., & Massagué, J. (1986). Transforming growth factor-beta stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. Journal of Biological Chemistry, 261(9), 4337-4345. [24] Bluemke, A., Ring, A. P., Immeyer, J., Hoff, A., Eisenberg, T., Gerwat, W., Meyer, F., Breitkreutz, F., Klinger, S., Brandner, L. M., Sandig, J. M., Seifert, G., Segger, M., Rippke, D., Schweiger, F., & Dorothea, R. (2022). Multidirectional activity of bakuchiol against cellular mechanisms of facial ageing – Experimental evidence for a holistic treatment approach. International Journal of Cosmetic Science, 44(5), 558-570. doi:10.1111/ics.12784. [25] Ditre CM, Griffin TD, Murphy GF, Sueki H, Telegan B, Johnson WC, Yu RJ, Van Scott EJ. Effects of alpha-hydroxy acids on photoaged skin: a pilot clinical, histologic, and ultrastructural study. J Am Acad Dermatol. 1996 Feb;34(2 Pt 1):187-95. doi: 10.1016/s0190-9622(96)80110-1. PMID: 8642081. [26] Almeman, A. A. (2024). Evaluating the Efficacy and Safety of Alpha-Hydroxy Acids in Dermatological Practice: A Comprehensive Clinical and Legal Review. Clinical, Cosmetic and Investigational Dermatology, 17, 1661–1685. doi:10.2147/CCID.S453243. [27] Karwal, K.; Mukovozov, I. Topical AHA in Dermatology: Formulations, Mechanisms of Action, Efficacy, and Future Perspectives. Cosmetics 2023, 10, 131. https://doi.org/10.3390/cosmetics10050131 [28] He, X.; Wan, F.; Su, W.; Xie, W. Research Progress on Skin Aging and Active Ingredients. Molecules 2023, 28, 5556. https://doi.org/10.3390/molecules28145556 [29] Bissett, D. L., Oblong, J. E., & Matts, P. J. (2004). Niacinamide: A B vitamin that improves the appearance of aged skin. *Journal of Cosmetic Dermatology*, 3(1), 1-7. doi:10.1111/jocd.12004. [30] Hakozaki, T., Minwalla, Z., & Zhuang, J. (2002). The effect of niacinamide on reducing cutaneous pigmentation and suppression of melanosome transfer. *British Journal of Dermatology*, 147(20), 20-31. [31] Huang, Y., Zhang, Y., & Chen, N. (2024). Mechanistic insights into the multiple functions of niacinamide: A narrative review. *PMC*. doi:10.1007/s12325-024-02045-0. [32] Kumar, S., & Gupta, R. (2024). Niacinamide: A versatile ingredient in dermatology and cosmetology. *PMC*. doi:10.1007/s12325-024-02046-z. [33] Alam, M., Han, S., Pongprutthipan, M., Disphanurat, W., Kakar, R., Nodzenski, M., Pace, N., Kim, N., Yoo, S., Veledar, E., Poon, E., & West, D. P. (2014). Efficacy of a needling device for the treatment of acne scars: A randomized clinical trial. JAMA Dermatology, 150(8), 844-849. https://doi.org/10.1001/jamadermatol.2013.8687 [34] Zhang, Y., Li, H., Wang, J., & Wang, Y. (2023). Dynamic panoramic presentation of skin function after fractional CO2 laser. Journal of Cosmetic Dermatology, 22(8), 3098-3105. https://doi.org/10.1111/jocd.16445 [35] Fabi, S. G., & Sundaram, H. (2013). The role of radiofrequency in skin tightening. Journal of Clinical and Aesthetic Dermatology, 6(9), 35-42. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799110/ [36] Sullivan, P. K., & Heller, M. M. (2017). The role of ultrasound in skin rejuvenation: A review of the literature. Journal of Cosmetic Dermatology, 16(1), 18-25. https://doi.org/10.1111/jocd.12279 [37] Pérez, M. R., & Gutiérrez, J. M. (2021). Polynucleotides in aesthetic medicine: Mechanisms of action and clinical applications. Journal of Cosmetic Dermatology, 20(10), 3090-3096. https://doi.org/10.1111/jocd.14189 [38] Liu, Y., Wang, Y., & Zhang, H. (2023). Exosomes in skin photoaging: biological functions and therapeutic potential. Stem Cells Translational Medicine, 12(1), 34-45. https://doi.org/10.1002/sctm.22-0145 [39] Sadick, N. S., & Matarasso, A. (2019). Skin Rejuvenation Using Intense Pulsed Light. JAMA Dermatology, 155(1), 43-50. https://doi.org/10.1001/jamadermatol.2018.3795 [40] DeLorenzi, C., & Cohen, J. L. (2015). Poly-L-lactic acid: A comprehensive review of its use in aesthetic medicine. Journal of Cosmetic Dermatology, 14(4), 293-301. https://doi.org/10.1111/jocd.12176 [41] Vleggaar, D., & Bauer, U. (2004). Facial enhancement and the European experience with Sculptra™ (poly-l-lactic acid). Journal of Drugs in Dermatology, 3(5), 542-547. [42] Goldberg, D., Guana, A., Volk, A., & Daro-Kaftan, E. (2013). Single-arm study for the characterization of human tissue response to injectable poly-L-lactic acid. Dermatologic Surgery, 39(6), 915-922. [43] Lowe, N. J., Maxwell, C. A., & Patnaik, R. (2005). Adverse reactions to dermal fillers: review. Dermatologic Surgery, 31(s4), 1616-1625. [44] Werschler, W. P., et al. (2020). "Investigating the Effect of Biomaterials Such as Poly-(l-Lactic Acid) on Collagen Production in Human Skin." Journal of Cosmetic Dermatology, 19(3), 675-683. [45] Michno et al. (2023). "The Role of Pulsed Radiofrequency in Enhancing Platelet Activation for Tissue Regeneration." *Journal of Pain Research*. [PMC10302511](https://pmc.ncbi.nlm.nih.gov/articles/PMC10302511/). [46] Mishra et al. (2016). "Platelet Rich Plasma: A Short Overview of Certain Bioactive Components." *Bioactive Components in Regenerative Medicine*. [PMC5329835](https://pmc.ncbi.nlm.nih.gov/articles/PMC5329835/). [47] Karpie et al. (2022). "Platelet-Rich Plasma in Plastic Surgery: A Systematic Review." *Therapeutic Advances in Psychopharmacology*. [Karger](https://karger.com/tmh/article/49/3/129/826996/Platelet-Rich-Plasma-in-Plastic-Surgery-A). [48] Lopez-Vidriero et al. (2010). "The Utility of Platelet-Rich Plasma in Modern Orthopedic Practices: A Review of the Literature." *Orthopedic Reviews*. [Scholastica HQ](https://journaloei.scholasticahq.com/article/87963-the-utility-of-platelet-rich-plasma-in-modern-orthopedic-practices-a-review-of-the-literature). [49] Hall et al. (2009). "Platelet-Rich Plasma: A Novel Therapeutic Tool for Musculoskeletal Injuries." *Sports Medicine*. [Reumatologia Clinica](https://www.reumatologiaclinica.org/en-platelet-rich-plasma-a-new-articulo-S2173574312001554). The UV Index (UVI) is a valuable tool for assessing the strength of ultraviolet (UV) radiation from the sun at any given location and time. The UVI values are determined using the STAR (System for Transfer of Atmospheric Radiation) model. This model takes into account various atmospheric conditions to estimate UV radiation levels. The values provided reflect typical conditions for each location and serve as reference points. Actual UV Index readings can vary due to local factors, such as temporary changes in ozone levels and other atmospheric conditions. The values range from 0 to 11+, serving as a standardized guide for sun protection measures. This helps us understand the potential for skin damage based on UV exposure levels. They are specified for the 21st of each month across different regions. Higher UVI values indicate a greater risk of harm, particularly concerning sunburn, DNA damage, premature skin aging and hyperpigmentation [1][2]. HIGHEST AND LOWEST UV INDEX VALUES Highest UV Index The highest recorded UV Index values can reach 12 or more, especially in regions near the equator, high-altitude areas, and places with low ozone levels. The Atacama Desert in Chile has documented peaks as high as 20, highlighting the extreme UV exposure possible in certain environments [2]. Lowest UV Index The lowest values are typically observed at night or during winter months in polar regions, where solar angles are significantly reduced, often resulting in readings close to zero [2][3]. GEOGRAPHIC INFLUENCES ON UV LEVELS UV exposure varies widely across different geographical regions and withing the regions: ▌Europe: Generally experiences moderate UV levels due to higher latitudes and frequent cloud cover [4]. ▌Asia: Significant variability; tropical areas encounter high UV levels while northern regions have lower indices [2]. ▌Australia: Known for high UV exposure, particularly during summer months, due to its proximity to the equator and clearer skies. ▌USA: Southern states typically report higher UV indices compared to their northern counterparts. ▌Latin America: High UV indices are prevalent near the equator, while southern regions like Argentina experience lower values [2][3]. ▌Altitude: Higher altitudes receive more intense UV radiation due to a thinner atmosphere [2]. ▌Reflection: Beaches can experience increased UV levels due to sunlight reflecting off water and sand [3]. ▌Northern vs. Southern hemisphere: The Southern hemisphere generally has higher UV levels attributed to less atmospheric pollution and ozone depletion [2]. ▌Equatorial regions: These areas maintain consistently high UV indices throughout the year due to direct sunlight [2][3]. INDOOR vs OUTDOOR UV EXPOSURE The UV Index indoors is significantly lower than outdoor levels on a sunny day. This is primarily due to the filtering effect of window glass, which blocks most UVB radiation. On a clear day, outdoor UV levels can reach up to 8,000 µW/cm², while indoor levels near a window may be as low as 250 µW/cm², dropping further with distance from the window. The indoor UVI reduction is primarily due to the filtering effect of glass windows, which block most UVB (320–400 nm) radiation while allowing some UVA (320–400 nm) rays to penetrate and can still contribute to premature skin aging, hyperpigmentation and DNA damage. Blue Light (400–495 nm): Part of visible light spectrum; penetrates glass easily. High energy Visible Light is responsible for 50% of the free radical activity [5] and like UV radiations contributes to premature skin aging, hyperpigmentation and DNA damage. Factors influencing indoor UV exposure include window size, orientation, and surrounding obstructions like trees. Direct and indirect exposure ▌Direct exposure occurs when sunlight directly enters through windows. ▌Indirect (Diffuse) exposure results from sunlight scattering off surfaces or atmospheric particles. While diffuse exposure is reduced by walls and roofs, it can still penetrate through windows [3]. Factors affecting indoor exposure 1. Window glass: Standard glass blocks most UVB but allows some UVA and High energy Visible Light through. 2. Sky view: More visible sky from indoors increases diffuse UV exposure. 3. Distance from windows: The intensity of UV radiation decreases with distance from windows due to the inverse square law [3]. 4. Window orientation and size: Larger windows facing south (in the Northern Hemisphere) or north (in the Southern Hemisphere) allow more sunlight into indoor spaces [3]. 5. Scattering (indirect – diffuse exposure) CHANGING UVI OVER TIME There is scientific evidence indicating that the UV Index (UVI) is influenced by various environmental factors, including changes in ozone levels and climate conditions, which can affect UV radiation exposure over time. 1. UV radiation: A study by Fountoulakis et al. (2020) analyzed long-term changes in UV-B radiation and found that variations in UV levels are primarily driven by changes in aerosols and total ozone, with significant regional differences observed. The study indicates that while some areas have experienced increases in UV-B irradiance, others have shown decreases, particularly during summer months in polar regions due to improvements in ozone levels [6]. 2. Impact of ozone depletion: Research has shown that the decline of stratospheric ozone has historically led to increased UV radiation at certain wavelengths. For instance, a study by Bais et al. (2011) projected that UV irradiance would likely return to its 1980 levels by the early 21st century at northern mid-latitudes and high latitudes, suggesting ozone recovery influences UV radiation levels [7].While standard windows block most harmful UVB rays, damaging UVA and blue light (or HEVIS) can still penetrate indoors, affecting skin´s beauty and health. Awareness of these factors and UV Index enables you to take appropriate protective measures against harmful effects of sunlight even indoors while considering the benefits of controlled exposure for vitamin D synthesis [3]. Take care Anne-Marie References [1] Federal Office for Radiation Protection (BfS). (n.d.). What is the UV Index? Retrieved December 7, 2024, from bfs.de/EN/topics/opt/uv/index/introduction/introduction_node.html [2] Fioletov V, Kerr JB, Fergusson A. The UV index: definition, distribution, and factors affecting it. Can J Public Health. 2010;101(4):I5-9. doi: 10.1007/BF03405303. [3] Heckman CJ, Liang K, Riley M. Awareness and impact of the UV index: A systematic review of international research. Prev Med. 2019;123:71-83. doi: 10.1016/j.ypmed.2019.03.004. [4] World Health Organization. (n.d.). Radiation: The UV index. Retrieved December 7, 2024, from who.int/news-room/questions-and-answers/item/radiation-the-ultraviolet-(uv)-index [5] Albrecht S et al. Effects on detection of radical formation in skin due to solar irradiation measured by EPR spectroscopy. Methods. 2016;109:44-54. [6] Fountoulakis I et al. Long-term changes in UV-B radiation. Atmos Chem Phys. 2020;20(5):3075-3091. [7] Bais AF et al. Projections of UV radiation changes in the 21st century: impact of ozone recovery and cloud effects. Atmos Chem Phys. 2011;11(20):7533-7545. doi: 10.5194/acp-11-7533-2011 [8] Eleftheratos K et al. Ozone, DNA-active UV radiation, and cloud changes due to enhanced greenhouse gas concentrations. Atmos Chem Phys. 2022;22:12827–12855. doi: 10.5194/acp-22-12827-2022 12/7/2024 Comments The dark side of vitamin CAlthough Vitamin C in topical applications has many benefits, it also has a dark side; it can be harmful in its oxidised form, temporarily darken the skin and become a pro-oxidant. When vitamin C (ascorbic acid) is exposed to air, light, or heat, it undergoes chemical changes similar to how sugar turns brown when heated. This process doesn't need any special helpers (like enzymes); it just happens because of the conditions around it. Over time, vitamin C breaks down and forms new compounds that have a brown color, much like how sugar becomes caramel. This process is called non-enzymatic oxidation. Oxidized vitamin C can have both beneficial and potentially harmful effects on the skin. 1. ANTIOXIDANT Vitamin C is primarily known for its antioxidant properties, effectively neutralizing reactive oxygen species (ROS) and reducing oxidative stress in the skin. This helps prevent DNA damage and collagen degradation, contributing to anti-aging benefits and improved skin health and beauty [1][2][3]. How vitamin C acts as an antioxidant and undergoes oxidation in your skin Imagine vitamin C as a brave knight patrolling your skin, constantly on guard against harmful invaders called free radicals. These free radicals can damage skin cells, much like how rust can damage metal. Vitamin C, in its role as an antioxidant, sacrifices part of itself (donating an electron) to neutralize these free radicals, preventing them from causing harm. ▌ InInitial defense: When vitamin C donates an electron, it transforms into a less powerful form called the ascorbate radical, similar to a knight losing a piece of armor but still able to fight. ▌ Continued protection: If more free radicals attack, vitamin C can further degrade into dehydroascorbic acid. This form can be regenerated with the help of other antioxidants like glutathione, similar to allies helping the knight repair its armor. ▌ Synergistic effects: Using vitamin C with other antioxidants in skincare products enhances its protective abilities, much like having a team of knights working together for stronger defense. I prefer combining Vitamin C with Licochalcone A for comprehensive skin protection. Vitamin C acts quickly in the skin's outer layer, providing immediate extracellular defense. Meanwhile, Licochalcone A offers long-lasting, intracellular protection against free radicals induced by both UV and High Energy Visible Light, which penetrate deeper into the skin. This synergistic approach ensures a more complete and sustained antioxidant effect. ▌ Final sacrifice: Without support, vitamin C eventually breaks down into other compounds and loses its protective power completely. 2. PRO-OXIDANT At high concentrations, vitamin C can exhibit pro-oxidative properties, generating hydrogen peroxide (H2O2) and leading to increased oxidative stress, particularly when vitamin C interacts with transition metals (Cu and Fe), which can catalyze the formation of harmful radicals [4][5]. This increases the risk of irritation or damage to skin cells. Copper (Cu): Copper compounds can penetrate the skin and participate in redox reactions [6]. Copper can catalyze the oxidation of ascorbate and participate in the Haber-Weiss reaction, generating free radicals [7]. Iron (Fe): Iron can participate in the metal-catalyzed Haber-Weiss reaction, also known as the superoxide-driven Fenton reaction, which produces harmful free radicals [7]. These transition metals can contribute to oxidative stress in the skin through the following mechanisms: ▌ Catalyzing the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) [8]. ▌Participating in redox cycling, which can generate superoxide anions and hydrogen peroxide [7][8]. ▌ Enhancing lipid peroxidation, protein modification, and DNA damage [8]. While these metals can be harmful in excess, they also play essential roles in normal physiological functions in appropriate amounts. 3. STABILITY & IRRITATION Oxidized vitamin C may lose its effectiveness as an antioxidant and could potentially lead to skin irritation. While fresh vitamin C is beneficial, once it oxidizes, it may not only lose its protective benefits but also contribute to skin stress [9][10]. 4. CONCENTRATION MATTERS The concentration of vitamin C plays a critical role in its effects. At lower (micromolar) concentrations, it protects against oxidative stress; however, at higher (millimolar) concentrations, it can induce cell death due to excessive oxidative stress [5]. Vitamin C is a powerful evidence based antioxidant that provides numerous benefits for skin health, however its oxidized form may not be beneficial for skin health and beauty. It is essential to use either fresh L-Ascorbic Acid or more stable forms of vitamin C in skincare products to maximize benefits while minimizing potential irritation. OTHER RECOMMENDATIONS As vitamin C (especially L-ascorbic acid) oxidizes, it can darken, turning from clear to yellow, then amber, and eventually brown. ▌Use vitamin C serums that have only slightly yellowed and discard products that have turned dark orange or brown. Be aware of signs of oxidation, such as changes in color or smell. ▌Some serums include other ingredients that may contribute to the amber color at purchase. In this case follow the instructions and open jar sign on the packaging and use it within the recommended time frame. ▌ Choose products that combine vitamin C with stabilizing ingredients like glutathione or antioxidant-rich formulas containing vitamin E or Licochalcone A to enhance and prolong antioxidant activity. ▌Store your vitamin C serum properly (cool, dark place. Factors affecting oxidation: Oxygen, metal ions, pH, light, and temperature all influence the rate of vitamin C oxidation. ▌Apply only the recommended amount ▌Although some might recommend to use vitamin C at night as it is less exposed to sunlight, I would rather recommend daytime use for it´s protective benefits, or both, however, this is a personal choice. Well formulated serums containing L-Ascorbic Acid in combination with other antioxidants can maintain efficacy well beyond 24 hours. Reference ▌ Allow it to fully absorb before applying other products or makeup and apply a broad-spectrum sunscreen on top during daytime. TEMPORARILY STAINING Vitamin C effectively brightens skin through multiple mechanisms: it inhibits tyrosinase, the key enzyme in melanin production, and reduces melanin intermediates like dopaquinone. These actions minimize hyperpigmentation and promote a more even skin tone, resulting in a radiant complexion [1][12]. However, vitamin C can also darken the skin temporarily. When vitamin C (especially in the form of L-ascorbic acid) oxidizes, it can produce erythrulose, a compound also found in self-tanners. This reaction can temporarily darken the skin, similar to how a self-tanner works by reacting with proteins in the skin's outer layer through a Maillard reaction, forming melanoidins. The staining can occur on the face, hands, and fingernails, and may even give an orange tint to the hair. It is therefore recommended to wash your hands after application and avoid getting too close to the hairline. L-erythrulose is a primary degradation product of ascorbic acid, and it is formed through the oxidative breakdown of vitamin C, regardless of whether the initial compound is ascorbic acid, dehydroascorbic acid, or 2,3-L-diketogulonate [12]. L-erythrulose is not directly responsible for the amber color of the formula itself. Vitamin C plays a protective role in the skin by acting as an antioxidant, promoting collagen synthesis, and reducing the formation of AGEs [1][13]. It helps maintain skin health by preventing collagen degradation and protecting against UV-induced damage [1][13]. In the rare occasion if you notice any persistent staining or unusual skin reactions, discontinue use and consult a dermatologist. Take care Anne-Marie References [1] Al-Niaimi F, Chiang NYZ. J Clin Aesthet Dermatol. 2017 Jul;10(7):14-17. [2] Khalid A, et al. J Health Rehabil Res. 2024;4(2):1489-1494. [3] Pullar JM, et al. Nutrients. 2017 Aug 12;9(8):866. [4] Kaźmierczak-Barańska J, et al. Nutrients. 2020 May 21;12(5):1501. [5] Chakraborty A, Jana NR. ACS Appl Mater Interfaces. 2017 Dec [6] Hostynek JJ, Maibach HI. Toxicol Mech Methods. 2006;16(5):245-65. [7] Buettner GR, Jurkiewicz BA. Radiat Res. 1996 May;145(5):532-41. [8] Chaudhary P, et al. Front Chem. 2023 May 10;11:1158198. 6;9(48):41807-41817. [9] Jelodar G, et al. Zahedan J Res Med Sci. 2023;25(4):e4037. [10] Podmore ID, et al. Nature. 1998 Apr 9;392(6676):559. [11] De Dormael R, et al. Vitamin C Prevents UV Pigmentation: Meta-analysis. J Clin Aesthet Dermatol. 2019;12(2):E53-E59. [12] Simpson GL, Ortwerth BJ. Biochim Biophys Acta. 2000;1501(1):12-24. [13] Wang K, et al. Role of Vitamin C in Skin Diseases. Front Physiol. 2018;9:819. 12/7/2024 Comments Regenerative aesthetics: Wound healing & growth factors for collagen biostimulationInterestingly, the biochemical pathways involved in skin rejuvenation and wound healing share notable similarities. This connection forms the basis for many clinical regenerative aesthetical treatments designed to stimulate collagen production. Interventions, such as chemical peelings and energy-based devices, work by creating controlled damage (wound) to trigger the skin's natural healing response, while topical treatments can include growth factors to boost collagen synthesis (biostimulation) and promote skin regeneration [1]. Wound healing is a complex biological process that relies on the synchronized actions of various cell types, guided by growth factors and cytokines [2]. Central to this regenerative process is collagen, a crucial component of the extracellular matrix (ECM) giving skin strenght and structure, however is declining as we age and therefore a primary target for skin (pre)rejuvenation treatments. Collagen's plays vital roles throughout the wound healing process [3]. The wound healing process has four distinct however overlapping phases (illustration): [3][4] 1. Hemostasis: ▌Platelets release growth factors including PDGF, IGF, TGF-α/β, and EGF, initiating the wound healing cascade and attracting immune cells to the wound site [3][5]. 2. Inflammation: ▌ Growth factors and cytokines released by platelets and immune cells promote inflammation and cellular migration [5]. ▌Macrophages produce additional growth factors, including FGF, which induces fibroblast activation and proliferation [5]. 3. Proliferation: ▌PDGF and TGF-β stimulate fibroblast migration, proliferation, and collagen production [4][5]. ▌FGF promotes fibroblast proliferation and angiogenesis [4]. ▌VEGF is crucial for angiogenesis and the formation of granulation tissue [5][6]. ▌KGF and EGF facilitate reepithelialization by stimulating keratinocyte migration and proliferation [6]. 4. Remodeling: ▌ TGF-β influences the transition from type III to type I collagen, improving wound strength [3][5]. ▌This phase can last from 3 weeks to 2 years post-injury [5]. This explains why biostimulation of collagen production is a gradual process and ultimate results can take weeks or even months. Initially, type III collagen is deposited in the granulation tissue, forming a loose matrix with other components like hyaluronic acid and fibronectin [3][5]. ▌During remodeling, type III collagen is gradually replaced by stronger type I collagen, increasing the mechanical strength of the tissue [3][5]. ▌The collagen fibers are rearranged into a more organized lattice structure, although newly formed scar tissue has only 70-80% of the tensile strength of intact skin [5]. ▌ Fibroblasts and myofibroblasts, stimulated by growth factors, are responsible for collagen production and remodeling [5][7]. Impairments in any phase of wound healing can lead to chronic, non-healing wounds, which is a growing concern in healthcare [3]. GROWTH FACTORS Growth factors (GF) are naturally occurring polypeptides secreted by various cells including the dermal fibroblast, facilitating signaling pathways between and within cells throughout the healing phases [6]. These factors, including Platelet-Derived Growth Factor (PDGF), Vascular Endothelial Growth Factor (VEGF), Epidermal Growth Factor (EGF), Transforming Growth Factor-β (TGF-β), among others, function synergistically to guide the wound from injury to complete tissue regeneration [4]. Topical applied growth factors can support this skin rejuvenation healing process [8][9]. However, direct application of growth factors to wounds faces challenges such as rapid degradation in the wound environment and the need for high doses to achieve clinical efficacy [4]. COLLAGEN Collagen, whether in its natural fibrillar form or as soluble parts in the wound environment, closely interacts with these growth factors [3]. Collagen not only provides structural support to the skin, it also actively participates in cell signaling, influencing key processes such as hemostasis, inflammation resolution, angiogenesis, and matrix remodeling [3][10]. The interaction between growth factors and collagen creates a lively environment that is essential for effective wound healing. Some studies suggest potential benefits of oral collagen supplements [11][12][13] and topical collagen products [14] for wound healing. A high quality collagen powder does have right building blocks (amino acids: proline, glycine and hydroxyproline) for collagen production. The effects may vary depending on the type of wound, collagen formulation, and application method. Exosomes [15] Exosomes isolated from stem cell cultures contain various growth factors, including EGF, VEGF, TGF, HGF, FGF, IGF, and PDGF. These growth factors play crucial roles in skin regeneration, anti-aging effects, and wound healing by promoting fibroblast proliferation and collagen synthesis. The use of skin´s own healing power via a regenerative aesthetic treatment causing controlled injury is collagen biostimulatory and the use of topical growth factors, exosomes and oral collagen powders may enhance the outcome. Always consult a qualified healthcare professional to determine what the most suitable approach is for your needs and goals. Take care Anne-Marie References: [1] Goldman R. Growth factors and chronic wound healing: past, present, and future. Adv Skin Wound Care. 2004 Jan-Feb;17(1):24-35. doi: 10.1097/00129334-200401000-00012. PMID: 14752324. [2] Barrientos S, Brem H, Stojadinovic O, Tomic-Canic M. Clinical application of growth factors and cytokines in wound healing. Wound Repair Regen. 2014 Sep-Oct;22(5):569-78. doi: 10.1111/wrr.12205. PMID: 24942811; PMCID: PMC4812574. [3] Mathew-Steiner SS, Roy S, Sen CK. Collagen in Wound Healing. Bioengineering (Basel). 2021 May 11;8(5):63. doi: 10.3390/bioengineering8050063. PMID: 34064689; PMCID: PMC8151502. [4] Vaidyanathan, L. (2021). Growth Factors in Wound Healing – A Review. Biomedical and Pharmacology Journal, 14(3). DOI: https://dx.doi.org/10.13005/bpj/2249 [5] Park JW, Hwang SR, Yoon IS. Advanced Growth Factor Delivery Systems in Wound Management and Skin Regeneration. Molecules. 2017 Jul 27;22(8):1259. doi: 10.3390/molecules22081259. PMID: 28749427; PMCID: PMC6152378. [6] Barrientos, S., Stojadinovic, O., Golinko, M.S., Brem, H., & Tomic-Canic, M. (2008). Growth factors and cytokines in wound healing. Wound Repair and Regeneration, 16(5), 585–601. [7] Hochstein, A. O., & Bhatia, A. (2014). Collagen: Its Role in Wound Healing. Podiatry Management, 33(6), 103-110. [8] Zarei, F., & Soleimaninejad, M. (2018). Role of growth factors and biomaterials in wound healing. Artificial Cells, Nanomedicine, and Biotechnology, 46(sup1), 906–911. [9] La Monica, F.; Campora, S.; Ghersi, G. Collagen-Based Scaffolds for Chronic Skin Wound Treatment. Gels 2024, 10, 137. https://doi.org/10.3390/gels10020137 [10] Shi, S., Wang, L., Song, C. et al. Recent progresses of collagen dressings for chronic skin wound healing. Collagen & Leather 5, 31 (2023). https://doi.org/10.1186/s42825-023-00136-4 [11] Bagheri Miyab K, Alipoor E, Vaghardoost R, Saberi Isfeedvajani M, Yaseri M, Djafarian K, Hosseinzadeh-Attar MJ. The effect of a hydrolyzed collagen-based supplement on wound healing in patients with burn: A randomized double-blind pilot clinical trial. Burns. 2020 Feb;46(1):156-163. doi: 10.1016/j.burns.2019.02.015. Epub 2019 Dec 16. PMID: 31859087. [12] Choi FD, Sung CT, Juhasz ML, Mesinkovsk NA. Oral Collagen Supplementation: A Systematic Review of Dermatological Applications. J Drugs Dermatol. 2019 Jan 1;18(1):9-16. PMID: 30681787. [13] Katayoun Bagheri Miyab, Elham Alipoor, Reza Vaghardoost, Mohsen Saberi Isfeedvajani, Mehdi Yaseri, Kurosh Djafarian, Mohammad Javad Hosseinzadeh-Attar, The effect of a hydrolyzed collagen-based supplement on wound healing in patients with burn: A randomized double-blind pilot clinical trial, Burns, Volume 46, Issue 1, 2020, Pages 156-163,ISSN 0305-4179, https://doi.org/10.1016/j.burns.2019.02.015. [14] Friedman, A., et al. (2019). A Head-to-Head Comparison of Topical Collagen Powder to Primary Closure for Acute Full-Thickness Punch Biopsy-Induced Human Wounds: An Internally Controlled Pilot Study. Journal of Drugs in Dermatology. [15] Kim, J. Y., & Park, Y. H. (2017). Stem cell-derived exosome containing high amount of growth factors (World Intellectual Property Organization Patent No. WO2017123022A1). Google Patents. Vitamin C is one of the best researched skincare ingredients and is well-known for its significant benefits for the skin. It is the most abundant (primary) anti-oxidant in human skin [1] and necessary for collagen production. However, we are not able to synthesize vitamin C ourselves, as humans lack the enzyme L-gulonolactone oxidase necessary for synthesizing Vitamin C [2]. Thus we rely on food, supplementation or topical application [3]. 10% vitamin C in your serum is 200 x more concentrated than 1 orange. There are many compelling reasons to incorporate vitamin C in your skincare regimen, whether you are twenty or eighty. VITAMIN C (ASCORBIC ACID) Vitamin C, also known as ascorbic acid, plays a crucial role in collagen synthesis and maintenance, significantly influencing skin health and structural integrity. Vitamin C´s efficacy is dose-dependant, more efficacy in higher concentrations, which range between 3-20%. If you´re considering a collagen stimulating (or biostimulating) aesthetic treatment, it is highly recommended to have vitamin C either in your diet or skincare regimen (day, night or both). This is beneficial for younger, however especially more mature rejuvenators as vitamin C levels are lower in mature or photo-damaged skin [4]. More vitamin C is found in epidermis which is the top layer of the skin compared to the deeper layer or dermis [5]. Oxidative stress (from pollutants or UV irradiation) is associated with depleted vitamin C levels in the epidermal layer [6]. Topical ascorbic acid is favored in the practice of dermatology [1]. Vitamin C has multiple benefits, it enhances production of barrier lipids – decreasing TEWL (transepidermal water-loss) [7] , supports differentiation of keratinocytes (skin regeneration) [8] and protects keratinocytes from apoptosis (cell death), thus increases cell survival [9], supports wound healing, and increases dermal papillae. Dermal papillae provide nutrients and oxygen to the epidermis through their rich vascular network, support epidermal-dermal adhesion, and play a crucial role in regulating hair follicle development and cycling. THE ROLE OF VITAMIN C IN COLLAGEN PRODUCTION 1. Transcriptional activation: Vitamin C directly activates transcription factors involved in collagen synthesis. Research indicates that it stabilizes pro-collagen messenger RNA (mRNA), which regulates the expression of type I and type III collagen genes, particularly COL3A1. This stabilization enhances the overall production of collagen in fibroblasts. [10] 2. Hydroxylation: Vitamin C acts as a cofactor for prolyl and lysyl hydroxylases, enzymes necessary for the post-translational modification of collagen precursors. Hydroxylation of proline and lysine residues is essential for the stability and proper folding of collagen molecules. A deficiency in vitamin C leads to improper collagen formation, resulting in weakened connective tissues. [11] 3. Epigenetic regulation: Recent studies suggest that vitamin C can modulate gene expression through epigenetic mechanisms, influencing chromatin structure and accessibility. This regulation allows for enhanced transcription of collagen-related genes, thereby promoting collagen synthesis. [12] THE ROLE OF VITAMIN C IN PREVENTION OF COLLAGEN DEGRADATION Vitamin C not only plays a role in collagen synthesis but also influences its degradation: 1. Inhibition of matrix metalloproteinases (MMPs): Vitamin C has been shown to inhibit the activity of MMPs, particularly MMP-1 and MMP-12, which are responsible for collagen degradation. By reducing MMP activity, vitamin C helps maintain collagen levels in the skin. [13] [14] [15] 2. Oxidative stress reduction: As an antioxidant, vitamin C protects collagen (and other components, cells and our DNA) from oxidative damage caused by free radicals. This protection is vital for preserving the structural integrity of collagen fibers over time. [2] VITAMIN C FORMS IN SKINCARE Vitamin C is a vital ingredient in skincare, celebrated for its antioxidant properties, ability to stimulate collagen production, and other skin benefits. However, various forms of vitamin C differ in their stability, penetration, safety, and effectiveness. 1. L-Ascorbic Acid (LAA) ▌Penetration: High; penetrates the skin effectively but requires a low pH for optimal absorption. [16] ▌Stability: Prone to oxidation; degrades quickly when exposed to light and air. [17] ▌Safety and tolerability: Can cause irritation, especially at higher concentrations (esp. above 20%). [18] ▌Mode of action: Directly stimulates collagen synthesis and acts as a potent antioxidant. [19] ▌Effect on collagen: Increases collagen production by stabilizing pro-collagen mRNA and activating transcription factors involved in collagen synthesis. [20] LAA enhances the expression of collagen genes, particularly COL3A1, contributing to improved skin firmness and elasticity. [16] ▌Antioxidative capacity: Excellent; neutralizes free radicals effectively. ▌Other benefits: Brightens skin tone, reduces hyperpigmentation, increases dermal pappilae, smoother skin texture and reduced roughness thus enhance overall skin texture, hydration, reduce inflammation [21], can improve the effectiveness of sunscreens [22] Pros: Highly effective; significant evidence supporting its efficacy. Cons: May irritate sensitive skin; requires careful storage. 2. Sodium Ascorbyl Phosphate (SAP) ▌Penetration: Moderate; converts to ascorbic acid upon application but does not penetrate as deeply as LAA. ▌Stability: More stable than LAA; less prone to oxidation. [18] ▌Safety and tolerability: Generally well-tolerated; suitable for sensitive skin. ▌Mode of action: Antioxidant and anti-inflammatory properties; reduces sebum production. ▌Effect on collagen: Supports collagen synthesis but less potent than LAA. ▌Antioxidative capacity: Good; provides antioxidant protection but less effective than LAA. ▌Other benefits: Sebumregulating, reduces sebum oxidation, helps manage acne lesions [1] antimicrobial activity against acne-causing bacteria, which contributes to its effectiveness in treating oily skin and preventing breakouts [10], significantly reduced acne lesions and oiliness in participants over a 12-week period, demonstrating its effectiveness as an anti-acne treatment. [23] Pros: Gentle on the skin; stable formulation. Cons: Less potent than LAA; may not provide the same level of collagen stimulation, however more suitable for oily skin acne prone skin types. 3. Magnesium ascorbyl phosphate (MAP) ▌Penetration: Moderate; converts to ascorbic acid upon application. ▌Stability: Highly stable; retains efficacy longer than LAA. [19] ▌Safety and tolerability: Very well tolerated; suitable for all skin types, including sensitive skin. ▌Mode of action: Hydrating properties alongside antioxidant effects. ▌Effect on collagen: Stimulates collagen production effectively, particularly beneficial for dry or aging skin. ▌Antioxidative capacity: Good; protects against oxidative stress. ▌Other benefits: Improves skin hydration and soothes irritation. Pros: Hydrating; stable and effective at lower concentrations. Cons: May be more expensive than other forms. 4. Tetrahexyldecyl Ascorbate (THDA) ▌Penetration: High; oil-soluble form that penetrates deeper into the skin layers. ▌Stability: Very stable against oxidation and degradation. [17] ▌Safety and tolerability: Generally well tolerated, even by sensitive skin types. ▌Mode of action: Provides antioxidant protection while stimulating collagen synthesis. ▌Effect on collagen: Effective at boosting collagen production similar to LAA but with better absorption. ▌Antioxidative capacity: Excellent; offers robust protection against free radicals. ▌Other benefits: Enhances skin texture and brightness. Pros: Superior penetration and stability; effective for anti-aging. Cons: May be more costly due to formulation complexity. 5. Ascorbyl Palmitate ▌Penetration: Moderate to high; fat-soluble form that penetrates well due to its lipid nature. ▌Stability: More stable than LAA but less potent overall. [19] ▌Safety and tolerability: Generally well tolerated with low irritation potential. ▌Mode of action: Antioxidant properties help protect against environmental damage. ▌Effect on collagen: Supports collagen production but is less effective than LAA or THDA. ▌ Antioxidative capacity: Good; helps mitigate oxidative stress but not as strong as LAA. ▌Other benefits: Improves skin texture and reduces fine lines. Pros: Stable formulation with lower irritation risk. Cons: Less effective for collagen stimulation compared to other forms. 6. Ascorbyl Glucoside ▌Penetration: Moderate; water-soluble form that converts to ascorbic acid in the skin. ▌Stability: Highly stable against oxidation compared to LAA. [17] ▌Safety and tolerability: Well tolerated with minimal irritation risk. ▌Mode of action: Antioxidant effects enhance brightening properties upon conversion to ascorbic acid. ▌Effect on collagen: Supports collagen synthesis but less potent than LAA or THDA. ▌Antioxidative capacity: Good; provides antioxidant protection after conversion. ▌Other benefits: Brightens dull complexions effectively. Pros: Stable and gentle option for sensitive skin. Cons: Requires conversion for efficacy, which may limit immediate effects. NEW DELIVERY AND STABILIZATION SYSTEMS FOR TOPICAL VITAMIN C 1. Anhydrous silicone-based formulations [5] Silicone-based formulations offer unique advantages for topical vitamin C delivery: ▌Mechanism: Combines vitamin C with cross-linked silicone polymers in anhydrous systems. ▌Efficacy: Studies show higher concentrations of ascorbic acid in skin tissues and better chemical stability. Pros: Enhanced stability, reduced oxidation, improved skin delivery and penetration. Cons: Potential for heavier skin feel affecting consumer acceptance. 2. Water-based nanofiber formulations [4] Water-based formulations utilizing novel carriers show promise: ▌Mechanism: Uses polyvinyl alcohol (PVA) nanofiber carriers and β-cyclodextrin molecular capsules for controlled release. ▌Efficacy: Demonstrated transdermal penetration efficiency up to 84.71% after 24 hours. Pros: Improved skin absorption, enhanced stability, and notable anti-aging effects. Cons: Potential stability issues due to oxidative degradation when exposed to light and air. 3. Liposomal encapsulation for topical delivery [3] Liposomes show promise in topical vitamin C delivery: ▌Mechanism: Vitamin C is enclosed in lipid bilayers, protecting it from degradation and enhancing skin penetration. ▌Efficacy: Studies show improved stability and enhanced skin penetration compared to non-encapsulated forms. ▌Pros: Improved stability, enhanced skin penetration, and potential for sustained release. Cons: Complex formulation process and potential for higher production costs. 4. Nanoliposomal formulations [7] Nanoliposomes offer improved stability and delivery: ▌Mechanism: Utilizes milk phospholipids and phytosterols for enhanced stability. ▌Efficacy: Encapsulation efficiency up to 93% has been achieved. Pros: Increased stability and controlled release of vitamin C. Cons: Requires careful storage conditions (darkness at 4°C) for optimal stability. 5. Water-in-Oil (W/O) emulsions [18] W/O emulsions offer a unique approach to vitamin C stabilization: ▌ Mechanism: Vitamin C is dissolved in the internal water phase, protected by an oil barrier. ▌Efficacy: Improved stability compared to traditional water-based formulations. Pros: Enhanced stability and potential for improved skin feel. Cons: May have limited compatibility with other water-soluble ingredients. 6. Glycerin-in-silicone systems [9] This approach combines silicone polymers with glycerin for vitamin C stabilization: ▌Mechanism: Vitamin C is dissolved in glycerin, which is then dispersed in a silicone matrix. ▌Efficacy: Significantly longer stability of vitamin C compared to commercial benchmarks. Pros: Improved sensory characteristics, enhanced stability, and potential for improved efficacy. Cons: May require specialized formulation techniques. Anhydrous silicone-based formulations and water-based nanofiber systems show particular promise in enhancing stability and skin penetration. Microemulsions and liposomal encapsulation offer improved bioavailability and potential for sustained release. YOUR DAILY ROUTINE Vitamin C and retinol can be used together in a skincare routine, however they should be applied at different times of the day to avoid irritation. Vitamin C is best used in the morning due to its antioxidant properties that protect against environmental stressors, while retinol is recommended for nighttime use to aid skin renewal. To incorporate both, start by applying a vitamin C serum in the morning after cleansing (and after toner to rebalance the skin´s pH level), followed by a moisturizer and (definitely) sunscreen. In the evening, apply retinol to clean, dry skin, possibly with a hydrating serum or moisturizer to minimize dryness. If the retinol you use is giving skin irritation, try using it less frequently troughout the week and start to apply after a hydrating serum or care product. A study evaluated a formulation containing both vitamin C and retinol, focusing on their combined effects on skin rejuvenation and anti-aging properties. This trial assessed a regimen with 0.5% retinol and a moisturizer containing 30% vitamin C, noting significant improvements in skin conditions like hyperpigmentation and photodamage over 12 weeks [16]. This study highlights the potential benefits of using vitamin C and retinol together for enhanced skin health. [9] INCOMPATIBILITIES Vitamin C is generally compatible with many skincare ingredients, however using vitamin C with alpha hydroxy acids (AHAs) or beta hydroxy acids (BHAs), or post some procedures might cause irritation due to increased skin sensitivity or disrupted barrier. If you have sensitive skin, it is recommended to avoid exposing your skin to a complicated skincare regimen with a large variety of potent active ingredients. Irritation is your skin “telling” you to stop and rethink your regimen. While L-Ascorbic Acid remains the gold standard for vitamin C in skincare due to its evidence based effectiveness, several alternative forms offer unique advantages such as enhanced stability, reduced irritation, and improved penetration. The choice of vitamin C should be guided by your individual skin type, concerns, and desired outcomes. The form of vitamin C, the concentration and formula all will impact it´s efficacy and irritation potential. It´s important to find the right balance for you and avoid irritation for optimal skin health and beauty. Always consult a qualified healthcare professional to determine what the most suitable approach is for your needs and goals. Take care Anne-Marie [1] Huang, Y., Zhang, Y., & Chen, N. (2023). Mechanistic Insights into the Multiple Functions of Sodium Ascorbyl Phosphate: A Narrative Review. Biomedicines, 11(5), 1234. doi:10.3390/biomedicines11051234. [2] Carr, A. C., & Maggini, S. (2017). Vitamins C and E: Beneficial effects from a mechanistic perspective. Frontiers in Immunology, 8, 1-15. doi:10.3389/fimmu.2017.01916. [3] Lee, C., et al. (2013). Delivery of vitamin C to the skin by a novel liposome system. Journal of Cosmetic Science, 64(1), 11-24. [4] Hu, Y., et al. (2023). Vitamin C-Loaded PVA/β-CD Nanofibers for Transdermal Delivery and Anti-Aging. ACS Omega, 8(2), 2446-2456. [5] Pinnell, S. R., et al. (2001). Topical L-ascorbic acid: percutaneous absorption studies. Dermatologic Surgery, 27(2), 137-142. [6] Lee, J. H., & Kim, Y. J. (2017). Topical Vitamin C and the Skin: Mechanisms of Action and Clinical Applications. Antioxidants, 6(4), 94. doi:10.3390/antiox6040094. [7] Amiri S, et al. (2018). New formulation of vitamin C encapsulation by nanoliposomes: production and evaluation of particle size, stability and control release. Food Science and Biotechnology, 28(2):423-432. [8] Eeman, M., et al. (2016). Case Studies for the Use of Silicone Chemistry in Topical Formulations. Dow Corning Corporation. [9] Herndon JH Jr, Jiang LI, Kononov T, Fox T. An Open Label Clinical Trial to Evaluate the Efficacy and Tolerance of a Retinol and Vitamin C Facial Regimen in Women With Mild-to-Moderate Hyperpigmentation and Photodamaged Facial Skin. J Drugs Dermatol. 2016 Apr;15(4):476-82. PMID: 27050703. [10] Lee, S. Y., & Kim, J. H. (2022). Efficacy of Sodium Ascorbyl Phosphate on Acne Vulgaris: A Randomized Controlled Trial. Journal of Cosmetic Dermatology, 21(3), 1205-1211. doi:10.1111/jocd.14356. [11] Prockop, D. J., & Kivirikko, K. I. (1995). Ascorbate requirement for hydroxylation and secretion of procollagen. Journal of Biological Chemistry, 270(19), 11731-11734. doi:10.1074/jbc.270.19.11731. [12] De La Rosa, M. A., & Sosa, J. (2023). Vitamin C and epigenetics: A short physiological overview. Medical Journal of Cell Biology, 12(1), 1-8. doi:10.1515/med-2023-0688. [13] Kleszczyńska, H., et al. (2003). Influence of flavonoids and vitamins on the MMP- and TIMP-expression of human dermal fibroblasts after UVA irradiation. Photodermatology, Photoimmunology & Photomedicine, 19(5), 253-259. doi:10.1111/j.1600-0781.2003.00067.x. [15] Jacob, R.A., & Sotoudeh, G. (2001). Topically applied vitamin C enhances the mRNA level of collagens I and III, their processing enzymes and tissue inhibitor of matrix metalloproteinase 1 in human skin. Journal of Investigative Dermatology, 117(5), 1184-1190. doi:10.1046/j.0022-202x.2001.01484.x. [16] Huang, Y., Zhang, Y., & Chen, N. (2024). Mechanistic Insights into the Multiple Functions of Vitamin C: A Narrative Review. Biomedicines, 12(1), 123. doi:10.3390/biomedicines12010001. [17] Kumar, S., & Gupta, R. (2024). Niacinamide: A versatile ingredient in dermatology and cosmetology. *PMC*. doi:10.1007/s12325-024-02046-z. [18] Draelos, Z. D., & Thaman, L. A. (2016). The anti-aging effects of niacinamide: A review of clinical studies. *Dermatology Times*. Retrieved from https://www.dermatologytimes.com/view/anti-aging-effects-niacinamide. [19] Hsieh, C., Lin, Y., & Chen, Y. (2023). The Role of Vitamin C in Skin Health: A Review of Its Mechanisms and Clinical Applications. Antioxidants, 12(2), 203. doi:10.3390/antiox12020203. [20] Wu, M., Cronin, K., & Crane, J. (2022). Biochemistry, Collagen Synthesis. In StatPearls [Internet]. StatPearls Publishing. Available from: https://www.ncbi.nlm.nih.gov/books/NBK507709/. [21] PMC. (2015). The Roles and Mechanisms of Actions of Vitamin C in Bone: New Developments. Retrieved from https://pmc.ncbi.nlm.nih.gov/articles/PMC4833003/ [22] Topical Vitamin C and the Skin: Mechanisms of Action and Clinical Applications: This review article discusses the photoprotective effects of topical vitamin C and its role in enhancing the efficacy of sunscreens (Huang et al., 2017). Available at PMC5605218. [23] Kwon, H., & Kim, J. (2021). Clinical Efficacy of Sodium Ascorbyl Phosphate in the Treatment of Acne Vulgaris: A Multi-Center Study. Dermatology, 237(4), 456-462. doi:10.1159/000515678. Peptides have emerged as a powerhouse skincare ingredient, captivating both consumers and aesthetic healthcare professionals. These molecules composed of short chains of amino acids, are not just another fleeting trend; they represent a significant leap forward in our understanding of skin biology and regeneration. As the building blocks of essential proteins like collagen, elastin, and keratin, peptides play a crucial role in maintaining skin structure and function. Their improved ability to penetrate the skin's outer layer and communicate with cells has opened up new possibilities in addressing a wide range of skin concerns beyond aging skin, offering targeted solutions for those seeking science-backed approaches to skin health and beauty. WHAT ARE PEPTIDES? Peptides are short chains of amino acids, typically consisting of 2-50 amino acids, linked by peptide bonds. [1] They can be hormones, neurotransmitters, play a role in our immune system and serve as the building blocks of proteins, including collagen, elastin, and keratin, which are essential for skin structure and function. [2] BODY´S OWN PEPTIDES The exact number of peptides in the brain, body, and skin is not precisely defined due to the complexity and diversity of peptide structures and functions. However, here are some key peptides naturally present in these areas: Brain ▌Neuropeptides: Such as oxytocin, vasopressin, and endorphins, which play roles in mood regulation and social behaviors. ▌Enkephalins: Involved in pain modulation. Body ▌Insulin: Regulates glucose metabolism. ▌Glucagon: Works with insulin to maintain blood sugar levels. ▌Growth hormone: Stimulates growth and cell reproduction. Sometimes off label prescribed in regenerative medicine. Skin ▌Collagen peptides: Provide structural support and elasticity. ▌Elastin peptides: Contribute to skin's elasticity and resilience. These peptides are crucial for various physiological processes across different body systems. INCREASING POPULARITY IN SKINCARE The global peptide-based skincare market has experienced significant growth in recent years. ▌ The global peptide-based cosmetics market is projected to reach $39.9 billion by 2028, with a compound annual growth rate (CAGR) of 6.2% from 2021 to 2028. ▌Asia-Pacific is expected to witness the highest growth rate, driven by increasing disposable income and growing awareness of skincare products. ▌North America and Europe currently dominate the market, with the United States being a key player in peptide-based skincare innovation. MECHANISMS OF ACTION Peptides in skincare products primarily function through three main mechanisms: 1. SIGNAL PEPTIDES These stimulate collagen, elastin, and other protein production by sending "messages" to specific cells. [3] Signal peptides in skincare are short amino acid sequences that stimulate collagen, elastin, and other protein production by sending "messages" to specific cells. Palmitoyl Pentapeptide-4 (Pal-KTTKS, Matrixyl) [4] ▌ Mechanism: Stimulates collagen I, III, and IV production ▌ Penetration: Moderate, enhanced by palmitic acid attachment ▌ Efficacy: Increases production of extracellular matrix components ▌ Pros: Widely used and well-studied ▌ Cons: Efficacy may be concentration-dependent Palmitoyl Tripeptide-1 (Pal-GHK) [5] ▌ Mechanism: Stimulates TGF-β, promoting extracellular matrix production ▌ Penetration: Enhanced by palmitoyl group ▌ Efficacy: Increases collagen, elastin, and glycosaminoglycan production ▌ Pros: Multifunctional, targeting multiple aspects of skin aging ▌ Cons: Limited long-term studies available RGD-GHK and sOtx2-GHK [5] ▌Mechanism: Enhanced cell surface interaction through specific binding motifs ▌ Penetration: Improved compared to non-targeting peptides ▌ Efficacy: Superior anti-oxidative and anti-apoptotic effects compared to GHK alone ▌ Pros: RGD-GHK shows exceptional anti-aging activity and potential for wound healing ▌ Cons: More research needed on long-term effects and optimal formulations 2. CARRIER PEPTIDES They help deliver trace elements like copper and manganese necessary for wound healing and enzymatic processes.[3] GHK-Cu (Copper Tripeptide-1) [4] ▌ Mechanism: Delivers copper to cells, promoting wound healing and collagen synthesis ▌ Penetration: Moderate, enhanced by copper chelation ▌ Efficacy: Promotes wound healing and has antioxidant properties ▌ Pros: Well-studied for wound healing applications ▌ Cons: Potential for oxidative damage if used in high concentrations 3. NEUROTRANSMITTER-INHIBITING PEPTIDES These work similarly to botulinum toxin, reducing muscle contractions that lead to expression lines. [3] Acetyl Hexapeptide-3 (Argireline) [4] ▌ Mechanism: Inhibits SNARE complex formation, reducing muscle contractions ▌ Penetration: Limited due to larger size ▌ Efficacy: Reduces appearance of expression lines ▌ Pros: Non-invasive alternative to botulinum toxin ▌ Cons: Effects are temporary and may vary between individuals I would not want to compare the efficacy to botulinum toxin The challenge with peptides in skincare is their skin permeability. Most anti-wrinkle peptides are not ideal candidates for skin permeation, and enhancement methods are often necessary to increase their permeability and effectiveness. [5] Researchers are exploring ways to improve peptide delivery and efficacy, such as designing novel targeting peptide motifs to enhance the interaction between cosmetic peptides and the cell surface. [5] SOME OTHER PEPTIDES USED IN SKINCARE 4. Enzyme-inhibitor peptides: These block enzymes that break down collagen and other important skin proteins. 5. Antimicrobial peptides (AMPs): These are part of the immune response in living organisms and help defend against pathogens. 6. Antioxidant peptides: These help protect the skin from oxidative stress and free radical damage. BENEFITS OF PEPTIDES IN SKINCARE 1. Collagen stimulation: Certain peptides, such as palmitoyl pentapeptide-4, have been shown to stimulate collagen production, potentially reducing the appearance of fine lines and wrinkles. [6] 2. Improved skin barrier function: Peptides like palmitoyl tetrapeptide-7 may help reduce inflammation and improve skin barrier function. [7] 3. Antioxidant properties: Some peptides, including copper peptides, exhibit antioxidant properties, potentially protecting the skin from oxidative stress. [8] 4. Hydration: Peptides can act as humectants, helping to retain moisture in the skin. [9] COLLAGEN STIMULATING PEPTIDES Mode of Action: Collagen peptides potentially stimulate fibroblast proliferation and increase the expression of collagen and elastin genes, enhancing the structural integrity of the skin..[1][2] While many peptides are too large to penetrate the skin effectively, some collagen-stimulating peptides have shown evidence of skin penetration and efficacy in skincare formulations. 1. Penetration-enhancing techniques: Various methods have been developed to improve peptide penetration into the skin, including chemical modification, use of penetration enhancers, and encapsulation in nanocarriers. [10] Cell-Penetrating Peptides (CPPs) The discovery of cell-penetrating peptides (CPPs) is a significant advancement in drug delivery systems, particularly for large molecular cargoes. [11][12] Key features of CPPs include: 1. Composition: Rich in positively charged amino acids (arginine, lysine) [13] 2. Function: Ability to cross cell membranes [14] 3. Cargo capacity: Can transport large molecules into cells [15] 4. Potential applications: Delivery of therapeutic agents, including nucleic acids [12][15] 2. Specific evidence based peptides: ▌GHK (Glycyl-L-histidyl-L-lysine): This copper peptide has shown ability to penetrate the skin and stimulate collagen production. [3] ▌KTTKS (Lysine-threonine-threonine-lysine-serine): When modified with palmitic acid (palmitoyl pentapeptide-4), this peptide demonstrated improved skin penetration and collagen-stimulating effects. [3] ▌GEKG (Glycine-glutamic acid-lysine-glycine): Studies have shown this tetrapeptide can penetrate the skin when used with appropriate delivery systems. [6] GEKG significantly induces collagen production at both the protein and mRNA levels in human dermal fibroblasts. [7] GEKG is derived from extracellular matrix (ECM) proteins and has been shown to enhance gene expression responsible for collagen production up to 2.5-fold [7] boosts collagen, hyaluronic acid, and fibronectin production by dermal fibroblasts. [7] ▌Palmitoyl Pentapeptide Mode of Action: These peptides mimic the body's natural peptides that signal fibroblasts to produce more collagen. [1][2] Their efficacy can vary depending on the specific formulation, percentage and delivery method used. EVEN MORE PEPTIDES 1. Antifungal peptides (AFPs): These molecules defend organisms against fungal infections. 2. Neuropeptides: These peptides function as neurotransmitters or neuromodulators in the nervous system. 3. Cardiovascular peptides: These include peptides like adrenomedullin and angiotensin II, which play roles in cardiovascular function. 4. Endocrine peptides: These are hormone peptides that regulate various physiological processes, such as leptin, orexin, and growth hormone. 5. Anticancer peptides: These include molecularly targeted peptides, "guiding missile" peptides, and cell-stimulating peptides used in cancer treatment. 6. Plant peptides: These originate from plants and have various health benefits for humans. They can be incoroprated in skincare formulations. 8. Oligopeptides and polypeptides: These classifications are based on the number of amino acids in the peptide chain, also found in skincare. 9. Ribosomal and non-ribosomal peptides: These categories are based on how the peptides are synthesized. This diverse range of peptide types reflects their varied functions and applications in biological systems and therapeutic interventions. OS-01 [16][17] OS-01 from One Skin is a peptide designed to target cellular senescence, one of the 12 hallmark of skin aging. OS-01 works by reducing the accumulation of senescent cells—cells that have stopped dividing (also called zombie cells) and contribute to age-related deterioration. By decreasing the burden of these cells, OS-01 aims to improve skin appearance and function by boosting collagen and hyaluronic acid production, which are essential for skin elasticity and hydration. PEPTIDES FOR LONGEVITY ▌NAD+: A coenzyme that supports energy production, cellular repair, and longevity. It plays a role in DNA repair and declines with age. [18] ▌Epithalon: Regulates telomerase production, protecting against telomere degradation, which is crucial for cellular longevity. Research conducted by Khavinson et al. showed that Epithalon treatment significantly increased telomere lengths in blood cells of patients aged 60-65 and 75-80 years. ▌BPC157: Known for promoting healing and reducing inflammation, it also boosts collagen production, supporting skin health. [19] COLLAGEN PEPTIDE POWDERS. Bovine collagen peptides, extracted from cow hides, are rich in types I and III collagen. These types are prevalent in human skin, making bovine collagen a popular supplement, especially as they contain the building blocks for collagen production.. Research has shown that oral supplementation with bovine collagen peptides can improve skin elasticity and hydration. Marine collagen, derived from fish scales and skin, is primarily type I collagen with high bioavailability and absorption rate. Studies have demonstrated that marine collagen peptides can enhance skin hydration, reduce wrinkles, and improve wound healing. Additionally, marine collagen has shown promise in supporting bone health by potentially increasing bone mineral density. Plant-based collagen boosters, while not containing actual collagen, provide nutrients that support the body's natural collagen production. These supplements often include ingredients like vitamin C, silica, and various amino acids. Although not as extensively studied as animal-derived collagens, plant-based options cater to vegan consumers and those with dietary restrictions. In powder form they can easily be mixed into beverages or foods. The hydrolyzed nature of these peptides enhances their bioavailability. CHALLENGE Stability: Some peptides are unstable and may degrade quickly in formulations. Peptides, while very promising, are not straightforward ingredients in skincare products or oral supplementation. Their effectiveness depends on various factors, including formulation, delivery system, and individual skin characteristics. Always consult a qualified healthcare professional to determine what the most suitable approach is for your needs and goals. Take care Anne-Marie References: [1] Edgar, S., Hopley, B., Genovese, L. et al. Effects of collagen-derived bioactive peptides and natural antioxidant compounds on proliferation and matrix protein synthesis by cultured normal human dermal fibroblasts. Sci Rep 8, 10474 (2018). https://doi.org/10.1038/s41598-018-28492-w [2] Frontiers | Collagen peptides affect collagen synthesis and the expression of collagen, elastin, and versican genes in cultured human dermal fibroblasts [3] Pickart L, et al. GHK Peptide as a Natural Modulator of Multiple Cellular Pathways in Skin Regeneration. Biomed Res Int. 2015;2015:648108. doi:10.1155/2015/648108. [4] Draelos, Z. D. (2007). What are cosmeceutical peptides? Dermatology Times, 28(11). Retrieved from https://www.dermatologytimes.com/view/what-are-cosmeceutical-peptides [5] He B, Wang F, Qu L. Role of peptide-cell surface interactions in cosmetic peptide application. Front Pharmacol. 2023 Nov 13;14:1267765. doi: 10.3389/fphar.2023.1267765. PMID: 38027006; PMCID: PMC10679740. [6] Binder L, et al. Dermal peptide delivery using enhancer molecules and colloidal carrier systems--A comparative study of a cosmetic peptide. Int J Pharm. 2018;557:36-46. doi:10.1016/j.ijpharm.2018.08.019. [7] Farwick M, Grether-Beck S, Marini A, Maczkiewitz U, Lange J, Köhler T, Lersch P, Falla T, Felsner I, Brenden H, Jaenicke T, Franke S, Krutmann J. Bioactive tetrapeptide GEKG boosts extracellular matrix formation: in vitro and in vivo molecular and clinical proof. Exp Dermatol. 2011 Jul;20(7):602-4. doi: 10.1111/j.1600-0625.2011.01307.x. PMID: 21692860. [8] Bae, S. H., et al. (2020). "Copper peptides as a potential therapeutic agent for skin aging." Journal of Cosmetic Dermatology, 19(9), 2245-2252. doi:10.1111/jocd.13435. [9] Zhao, Y., et al. (2019). "Peptides and Proteins as Skin Moisturizers." Cosmetics, 6(3), 32. doi:10.3390/cosmetics6030032. [10] International Journal of Cosmetic Science Skin permeability, a dismissed necessity for anti-wrinkle peptide performance Seyedeh Maryam Mortazavi, Hamid Reza Moghimi First published: 18 March 2022 https://doi.org/10.1111/ics.12770 [11] Lindgren, M., Hällbrink, M., Prochiantz, A., & Langel, Ü. (2000). Cell-penetrating peptides. Trends in Pharmacological Sciences, 21(3), 99-103. [12] Tripathi, P. P., Arami, H., Banga, I., Gupta, J., & Gandhi, S. (2018). Cell penetrating peptides in preclinical and clinical cancer diagnosis and therapy. Oncotarget, 9(98), 37252-37267. [13] Chu, D., Xu, W., Pan, R., Ding, Y., Sui, W., & Chen, P. (2015). Rational modification of oligoarginine for highly efficient siRNA delivery: structure-activity relationship and mechanism of intracellular trafficking of siRNA. Nanomedicine: Nanotechnology, Biology and Medicine, 11(2), 435-446. [14] Frankel, A. D., & Pabo, C. O. (1988). Cellular uptake of the tat protein from human immunodeficiency virus. Cell, 55(6), 1189-1193. [15] Guidotti, G., Brambilla, L., & Rossi, D. (2017). Cell-Penetrating Peptides: From Basic Research to Clinics. Trends in Pharmacological Sciences, 38(4), 406-424. [16] Zonari, A., et al. (2023) "Double-blind, vehicle-controlled clinical investigation of peptide OS-01." Journal of Cosmetic Dermatology. doi:10.1111/jocd.16242. [17] Kirkland, J. L., et al. (2017). "Cellular Senescence: A Key Regulator of Aging." *Nature Reviews Molecular Cell Biology*, 18(7), 473-485. doi:10.1038/nrm.2017.30. [18] Fang, E. F., et al. (2019). NAD+ augmentation restores mitophagy and limits accelerated aging in Werner syndrome. Nature Communications, 10(1), 5284. [19] Chang CH, Tsai WC, Hsu YH, Pang JH. Pentadecapeptide BPC 157 enhances the growth hormone receptor expression in tendon fibroblasts. Molecules. 2014 Nov 19;19(11):19066-77. doi: 10.3390/molecules191119066. PMID: 25415472; PMCID: PMC6271067. Age clocks are sophisticated tools designed to measure our biological age, which differs from chronological age. While chronological age simply counts the years since birth, biological age reflects the functional state of an individual's body or specific tissues, such as the skin. These clocks use various biomarkers to estimate how well a person's body is aging at a cellular and molecular level. Biological age is a more accurate indicator of health and longevity than chronological age. It can be influenced by factors such as genetics, lifestyle, diet, and environmental exposures. Two individuals or even identical twins of the same chronological age may have significantly different biological ages, highlighting differences in their overall health and susceptibility to age-related diseases. Measuring biological age offers several benefits: 1. Early detection of accelerated aging, allowing for timely interventions. 2. Personalized health recommendations based on individual aging profiles. 3. Monitoring the effectiveness of lifestyle changes and anti-aging interventions. 4. More accurate prediction of health risks and potential longevity. For the skin specifically, measuring biological age can help assess the impact of environmental factors like sun exposure and guide targeted skincare strategies. Overall, biological age measurements provide valuable insights into an individual's health status, enabling proactive steps towards improving healthspan and potentially extending lifespan. Microbiome-based aging clocks represent an innovative approach to estimating biological age by leveraging the dynamic changes in the human microbiome throughout life. This concept has gained significant attention in recent years due to the growing understanding of the gut microbiome's crucial role in health and aging processes. INTRODUCTION TO MICROBIOME-BASED AGING CLOCKS Microbiome-based aging clocks are predictive models that estimate biological age using the composition, diversity, and functionality of the gut microbiota. These clocks offer a novel perspective on aging, complementing traditional epigenetic and other biological age clocks. COMPARISON WITH OTHER BIOLOGICAL AGE CLOCKS Epigenetic age clocks Epigenetic clocks, based on DNA methylation patterns, have been widely used to estimate biological age. These clocks, such as Horvath's clock and GrimAge, analyze specific CpG sites to predict age with high accuracy across various tissues including skin. OTHER BIOLOGICAL AGE CLOCKS ▌Telomere length-based clocks: Measure the length of telomeres, which shorten with age. ▌Proteomic clocks: Analyze protein levels in blood to estimate biological age. ▌Transcriptomic clocks: Use gene expression patterns to predict age. Compared to these established clocks, microbiome-based aging clocks offer unique advantages: 1. Non-invasive sampling: Gut microbiome samples can be collected easily through stool samples. 2. Rapid modulation: The microbiome can be quickly altered through diet and lifestyle changes, allowing for potential interventions. 3. Functional insights: These clocks provide information on metabolic and immune functions related to aging. TYPES OF MICROBIOME-BASED AGING CLOCKS Microbiome-based diversity clock: This model links the loss of microbial diversity to increased frailty. The 'Hybrid Niche Nature Model' uses Hubbell’s diversity index to estimate healthy aging, focusing on rare and abundant species rather than traditional richness and evenness measures. Although theoretical, this model suggests that greater uniqueness in the gut microbiome correlates with better health outcomes in older adults. Taxonomic composition-based clocks: These clocks predict age by analyzing the relative abundance of bacterial taxa at various levels. Machine learning models trained on large datasets can predict age with varying accuracy. For example, a study using gut microbiome data achieved a mean absolute error of 5.91 years. Another study found that skin microbiomes were more accurate than gut microbiomes in predicting age. Functional capacity-based clocks: These clocks assess the functional capacity of the microbiome by examining genes or metabolic pathways involved in microbial functions. They offer consistency across cohorts by focusing on microbial functions as a common denominator of health. A recent study developed a functional clock with a mean absolute error of 12.98 years by analyzing meta-transcriptomic profiles from a large cohort. Metabolite-based clocks: While still in development, these clocks use microbe-associated metabolites as biomarkers for biological age. Secondary bile acids, abundant in centenarians, have been identified as potential indicators. Multi-omics-based clocks: By integrating metagenomics, metatranscriptomics, and metabolomics data, these clocks provide a comprehensive understanding of the microbiome's role in aging. A study combining taxonomic and functional data achieved an average mean absolute error of 8.33 years. Microbiome-based aging clocks are promising tools for measuring biological aging and guiding health interventions. Their responsiveness to lifestyle changes makes them ideal for assessing strategies to promote longevity. As research progresses, combining host and microbiome data could enhance the accuracy of biological age predictions. This integrated approach will deepen our understanding of aging and help evaluate treatment effectiveness. Ultimately, these innovative tools will support a personalized approach to healthy aging, enabling dynamic precision skincare routines and lifestyle choices based on our unique biological profile. Take care Anne-Marie REFERENCES 1. Biological age vs. chronological age: ▌Belsky DW, et al. Biological age is superior to chronological age in predicting hospital mortality among critically ill patients. J Am Geriatr Soc. 2023;71(8):2462-2470. doi:10.1111/jgs.17982. 2. Health and longevity: ▌Levine ME, et al. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. 2015;16:25. doi:10.1186/s13059-015-0584-6. 3. Personalized health recommendations: ▌Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14:R115. doi:10.1186/gb-2013-14-10-r115. 4. Monitoring effectiveness of interventions: ▌ Zhang Y, et al. Biological age estimation: methods and biomarkers. Front Public Health. 2023;11:1074274. doi:10.3389/fpubh.2023.1074274. 5. Skin and environmental factors: ▌Richie J, et al. Skin photoageing following sun exposure is associated with decreased epigenetic and biologic age. Br J Dermatol. 2024;190(4):590-592. doi:10.1093/bjd/ljad527. 6. Microbiome's role in aging: ▌Ghosh T, et al. The gut microbiome as a modulator of healthy ageing. Nat Rev Gastroenterol Hepatol. 2022;19(8):497-511. doi:10.1038/s41575-022-00605-x. 7. Microbiome-based aging clocks: ▌Liu Z, et al. Human gut microbiome aging clocks based on taxonomic and functional profiles. Microbiome. 2022;10(1):1-15. doi:10.1186/s40168-022-01275-5. 8. Epigenetic age clocks: ▌Horvath S, et al. The epigenetic clock as a biomarker of aging and longevity: a review of recent advances and future directions. Aging Cell. 2022;21(9):e13607. doi:10.1111/acel.13607. 9. Microbiome-based diversity clock: ▌Sala C, et al. Gut microbiota ecology: Biodiversity estimated from hybrid neutral models and its relationship with health. PLoS One. 2020;15(10):e0237207. doi:10.1371/journal.pone.0237207. 10. Functional capacity-based clocks: ▌Min M, Egli C, Sivamani RK. The gut and skin microbiome and its association with aging clocks. Int J Mol Sci. 2024;25(13):7471. doi:10.3390/ijms25137471. 11. Taxonomic composition-based clocks: ▌Liu Y, et al. A biological age clock based on microbiome composition and its application in health assessment among older adults: an observational study in the UK Biobank cohort study population (N=500,000). Lancet Healthy Longev. 2023;4(7):e465-e466.doi:10.1016/S2666-7568(23)00213-1. 12. Metabolite-based clocks: ▌Sato Y, et al., Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians, Nature. 2021;599(7885):458–464.doi:10.1038/s41586-021-03832-5. The widespread belief that the epidermis renews itself every 28 days is inaccurate. Epidermal turnover primarily involves keratinocytes, the predominant cell type in the epidermis with 90%. These cells originate in the basal layer (stratum germinativum) and progressively move upward through the epidermal layers, undergoing various changes before being shed from the skin's surface as dead, flaky cells - a process known as desquamation [1]. The keratinocyte journey has several stages:
Epidermal turnover rates vary significantly with age: ▌In young adults: approximately 28-40 days [2] ▌In more mature adults: 60+ days [2] This age-related slowdown is attributed to decreased cell proliferation [3] KERATINOCYTE LIFESPAN The keratinocyte lifecycle can be divided into two main phases: 1. Active life: Approximately 8 to 10 days from mitosis (in the basal layer) to arrival in the stratum corneum [1]. 2. Stratum corneum transit: The period spent in the outermost layer as corneocytes (dead keratinocytes) before shedding [1]. Epidermal turnover dynamics The total epidermal turnover time, which includes both active life and stratum corneum transit, varies with age: ▌In young adults: The stratum corneum transit time is approximately 20 days [3] ▌In more mature adults: This transit time is lengthened by more than 10 days (approximately 30+ days) [3] This increase in transit time reflects a slowdown in epidermal cell proliferation rather than an increase in cell layers [3] On average, it takes an estimated 40 to 56 days for the keratinocytes in the epidermis to completely turn over [1] Overall epidermal turnover times Total turnover time (including both active life and stratum corneum transit) varies significantly with age. The decline in epidermal cell renewal is not constant throughout adulthood, remaining relatively stable in younger years before dropping more dramatically after age 50 [3]. Several factors influence the epidermal turnover of keratinocytes 1. Age: Epidermal turnover slows with age. In young adults, the process takes approximately 28-40 days, while in older adults it can extend to 60+ days [4]. 2. Growth factors: Epidermal growth factor (EGF) and keratinocyte growth factor (KGF) play crucial roles in regulating keratinocyte proliferation, migration, and differentiation [5]. 3. Transcription factors: p63, particularly the ΔNp63α isoform, is critical for maintaining keratinocyte proliferation and regulating the switch from proliferation to differentiation [4]. 4. Signaling pathways: Notch signaling, IKKα, and IRF6 are involved in regulating keratinocyte differentiation and epidermal turnover [4]. 5. Matrix stiffness: Increased extracellular matrix stiffness promotes keratinocyte proliferation through enhanced EGF signaling [5]. 6. Vitamin D: 1,25-dihydroxyvitamin D3 regulates keratinocyte proliferation and differentiation by modulating calcium concentrations and gene expression [6]. 7. Cell adhesion: Contact with the basal lamina, mediated by integrins, regulates keratinocyte proliferation and differentiation [7]. These factors work in concert to maintain the balance between keratinocyte proliferation in the basal layer and terminal differentiation in the upper layers, ensuring proper epidermal homeostasis and turnover. Improving epidermal turnover can be beneficial for several skin conditions, including:
1. Aging: Enhanced epidermal turnover can help reduce visible signs of aging such as: ▌ Wrinkles and fine lines ▌ Skin sagging ▌ Dull, rough skin texture (the size or the corneocytes is increased - see graph) 2. Acne: Faster skin cell turnover can help prevent acne by: ▌ Reducing the accumulation of dead skin cells that can clog pores ▌ Decreasing the risk of bacteria buildup on the skin surface 3. Hyperpigmentation and age spots: Improved turnover can address patches of darkened skin by promoting the removal of older, pigment-producing cells 4. Dry skin: Enhanced cell turnover can help improve skin hydration and barrier function [8] 5. Sun damage: Accelerated epidermal renewal can aid in repairing and replacing sun-damaged skin cells [9] Several in-office procedures and cosmetic ingredients have been shown to accelerate keratinocyte renewal and epidermal turnover: 1. Hyaluronic acid (HA) production enhancers: ▌1-ethyl-β-N-acetylglucosaminide (β-NAG2) has been shown to increase HA production in the epidermis, leading to accelerated keratinocyte proliferation and differentiation [10]. 2. Retinoids: ▌Topical retinoids, such as tretinoin, can increase epidermal turnover and promote keratinocyte proliferation [11]. 3. Chemical peels: ▌Various chemical peeling agents can stimulate epidermal renewal by inducing controlled damage to the skin [11]. 4. Microdermabrasion: ▌This procedure can promote skin turnover by physically removing the outermost layer of dead skin cells [11] 5. Laser treatments: ▌Certain laser therapies can stimulate epidermal regeneration and increase keratinocyte turnover [11] 6. Liquid Crystal Gel (LCG): ▌A study showed that low concentration LCG can increase epidermal thickness and potentially promote skin turnover [11] Excessive stimulation may lead to adverse effects. Therefore, these treatments should be used under professional guidance and with careful consideration of individual skin conditions. Always consult a qualified healthcare professional to determine what the most suitable approach is for your needs and goals. Take care Anne-Marie References: [1] Iizuka H. Epidermal turnover time. J Dermatol Sci. 1994 Dec;8(3):215-7. doi: 10.1016/0923-1811(94)90057-4. PMID: 7865480. [2] Maeda, K. New Method of Measurement of Epidermal Turnover in Humans. Cosmetics 2017, 4, 47. [3] Grove GL, Kligman AM. Age-associated changes in human epidermal cell renewal. J Gerontol. 1983;38(2):137-42. doi:10.1093/geronj/38.2.137 [4] Koster MI, Roop DR. J Invest Dermatol. 2007;127(11):2432-8. PMID: 17934504. [5] Wickert LE, et al. J Cell Sci. 2018;131(10):jcs215780. PMID: 29661845. [6] Wikipedia contributors. "Keratinocyte." Wikipedia, The Free Encyclopedia. [7] Megías M, et al. "Keratinocyte." Atlas of Plant and Animal Histology. University of Vigo. [8] Farage MA, Miller KW, Elsner P, Maibach HI. Aging Clin Exp Res. 2008;20(3):195-204. doi:10.1007/BF03020230. [9] Yaar M, Gilchrest BA. J Investig Dermatol Symp Proc. 2007;12(1):1-10. doi:10.1038/sj.jidsymp.5650020. [10] Yoshida H, et al. J Dermatol Sci. 2021;101(2):122-131. PMID: 33358097. [11] Musashi M, et al. Cosmetics. 2014;1(3):202-210. doi:10.3390/cosmetics1030202.
After "deep-diving" into autophagy and impaired autophagy, one of the twelve hallmarks of aging, it makes sense to shine some light on its equally important (however not so famous) partner in cellular housekeeping: the proteasome. It ́s primary function is breaking down proteins that are no longer needed, damaged, or misfolded [1]. Similar to autophagy, it is our body's and skin's very own trash and recycling system, working 24/7 to keep our cells healthy and functioning [2]. The human body is composed of approximately 16-20% protein by weight. This percentage can vary based on factors like age, sex, and overall body composition. Skin, is particularly rich in proteins, about 25-30% of the total protein in the human body is found in the skin and the dry weight of skin is approximately 70% protein. Loss of proteostasis (balance of protein synthesis, folding, and degradation) is one of the twelve hallmarks of aging and the proteasome is an important mechanism within the proteostasis network [3].
THE PROTEASOME The proteasome is a large, barrel-shaped protein complex found in all eukaryotic cells, responsible for the degradation of intracellular proteins [4]. It plays a crucial role in maintaining cellular homeostasis by selectively breaking down short-lived, damaged, or misfolded proteins [5]. The 26S proteasome consists of a 20S core particle and one or two 19S regulatory particles [6]. Proteins targeted for degradation are typically tagged with ubiquitin molecules, which are recognized by the 19S regulatory particle, allowing the protein to be unfolded and fed into the 20S core for proteolysis [7]. The ubiquitination process provides a highly selective mechanism for targeting proteins for degradation in comparison to other systems like lysosomes. Proteasomal degradation is an ATP-dependent process:
This process is crucial for:
▌Maintaining protein quality control [12] ▌Regulating cellular processes by controlling protein levels ▌Recycling amino acids for new protein synthesis The proteasome is involved in numerous vital cellular processes (see illustration), including: ▌Cell cycle regulation ▌Transcriptional control ▌Immune responses ▌Neuronal plasticity Its proper function is essential for cellular health, and dysfunction of the proteasome system has been implicated in various diseases, including neurodegenerative disorders and cancer. The proteostasis network The proteostasis network (PN) is a complex system of cellular machinery that maintains the integrity of the proteome consisting of collaborating systems to ensure proper protein folding, repair damaged proteins and eliminate those beyond repair. ▌Molecular chaperones and co-chaperones ▌The ubiquitin-proteasome system (UPS) ▌Autophagy machinery ▌Translational machinery
PROTEASOME VS AUTOPHAGY
Complementary cleaning and recycling systems While the proteasome primarily handles short-lived and soluble proteins, autophagy is responsible for degrading long-lived proteins, protein aggregates, and even entire organelles [13]. The proteasome plays critical roles in cell cycle control, gene expression, protein quality control, and immune responses, while other systems like autophagy are more involved in bulk degradation and cellular remodeling. The systems are not entirely independent and often work together to maintain cellular health [14]. The ubiquitin-proteasome system (UPS) and autophagy interact through various mechanisms:
PROTEASOME AND EPIGENETICS The proteasome also plays a significant role in epigenetics - the study of heritable changes in gene expression that don't involve changes to the underlying DNA sequence and recognised as one of the hallmarks of aging [19]. The proteasome influences epigenetics through several mechanisms: ▌Histone regulation + modification: The proteasome degrades histones, proteins that package DNA, influencing chromatin structure and gene accessibility [20].. ▌Transcription factor control + regulation: By regulating the levels of transcription factors, the proteasome indirectly affects gene expression patterns [21]. ▌Epigenetic modifier turnover + DNA methylation: The proteasome controls the levels of enzymes that modify histones and DNA, such as histone deacetylases (HDACs) and DNA methyltransferases (DNMTs) [22]. ▌Non-proteolytic functions: Some proteasome subunits have been found to directly interact with chromatin, suggesting a more direct role in gene regulation [23]. These interactions create a complex feedback loop between protein degradation and gene expression, highlighting the proteasome's far-reaching influence on cellular function PROTEASOME AND (SKIN) HEALTH The proteasome is likely present in skin cells and in extracellular fluids associated with skin, such as sweat and plays a vital role in maintaining health and skin quality by regulating the turnover of various proteins. Proteins are fundamental to life for several reasons:
Important proteins in skin and the human body based on their overall impact and prevalence:
Dysfunction of the proteasome in skin cells can lead to various dermatological issues, including ▌accelerated aging of skin cells ▌reduced collagen production and increased breakdown ▌impaired elastin function ▌wrinkles, sagging and loss of elasticity ▌impaired wound healing and barrier function ▌increased susceptibility to UV damage and DNA damage [26] Or more skin conditions like:
PROTEASOME AND CELLULAR SENESCENCE The proteasome plays a crucial role in preventing cellular senescence, a state of permanent cell cycle arrest associated with aging:
PROTEASOME AND IMMUNE FUNCTION The proteasome is integral to immune system function:
Glycosylated proteins Proteins connected to sugar molecules, known as glycosylated proteins, can be targeted by the proteasome: ▌Ubiquitin-Proteasome System (UPS) is capable of degrading many types of glycoproteins [29]. ▌However, hyperglycemia (high blood sugar) can impair proteasome function. Glucose-derived compounds like methylglyoxal (MGO) can modify proteasome subunits, reducing their activity [29]. Amyloids The proteasome's relationship with amyloids (involved in for example Alzheimer's disease) is more complex. The proteasome can degrade some amyloid precursor proteins and smaller amyloid aggregates [30]. However, larger amyloid fibrils often overwhelm or inhibit the proteasome: ▌Amyloid aggregates can clog the entrance to the proteasome's catalytic core. ▌Some amyloids can directly inhibit proteasome activity. INFLUENCERS PROTEASOME ACTIVITY Challenges in protein clearance Several factors can hinder the proteasome's ability to clear modified or aggregated proteins: Glycation: Advanced glycation end products (AGEs) formed in hyperglycemic conditions can modify the proteasome, reducing its activity [29]. Oxidative stress: Often associated with aging and disease, it can damage both proteins and proteasomes [29]. Aging: Proteasome activity generally declines with age, reducing the cell's capacity to clear problematic proteins [30]. The proteasome's activity is sensitive to pH changes: ▌Optimal pH range for proteasome function is typically between 7.5-8.0. ▌Acidic conditions tend to inhibit proteasome activity, while alkaline conditions can enhance it to a certain extent. ▌Skin pH, which is typically slightly acidic (around 4.7-5.75), may influence extracellular proteasome activity. Oxidative stress has complex effects on the proteasome system in skin: ▌Mild oxidation (hormesis) can stimulate proteasomal degradation, while severe oxidation inhibits it ▌Oxidative stress can cause the 26S proteasome to disassemble into its 20S core and 19S regulatory components [25] ▌In skin, oxidative stress from UV radiation or environmental pollutants may affect proteasome function ▌Severely oxidized proteins may form non-degradable aggregates that can bind to and inhibit the proteasome [24] ▌Oxidative stress can reduce cellular ATP levels, affecting the ATP-dependent 26S proteasome function [25] ▌Oxidative stress can alter the association of chaperone proteins like HSP70 with the proteasome, affecting its function and assembly [25] Temperature can significantly impact proteasome function: ▌The optimal temperature for proteasome activity is typically around 37°C (human body temperature) [27] ▌Higher temperatures may initially increase proteasome activity but can eventually lead to denaturation and loss of function. ▌Low temperatures reduce proteasome activity by slowing down enzymatic reactions. ▌Skin, being exposed to environmental temperature changes, may experience fluctuations in proteasome activity. MAINTAIN AND IMPROVE PROTEASOME Several strategies can help maintain and improve proteasomal function: Exercise: Regular physical activity has been shown to enhance proteasome activity. Diet: ▌Protein: Ensuring adequate intake of high-quality proteins provides the building blocks for maintaining a healthy proteome ▌Polyphenols: Found in green tea, berries, and red wine, can stimulate proteasome function. ▌Omega-3 fatty acids: May help maintain proteasome activity and reduce oxidative stress. ▌Sulforaphane (found in broccoli sprouts): Activates Nrf2, which enhances proteasome function. ▌Spermidine: This natural polyamine has been shown to enhance autophagy and improve proteostasis. ▌Curcumin: This compound from turmeric has been shown to enhance proteostasis and have anti-aging effects ▌Caloric restriction or intermittent fasting: May enhance proteasome activity and promote cellular health. Stress management: Chronic stress can impair proteasome function, so stress reduction techniques will be beneficial. Sleep: Crucial for cellular repair and protein homeostasis. Skincare + ingredients: ▌Sun protection: Use broad-spectrum sunscreens to protect skin from photo-damage, which can impair proteasome function. ▌Retinoids: May enhance proteasome activity in skin cells. ▌Peptides: Certain peptides have been shown to stimulate proteasome function. ▌Licochalcone A: Activates Nrf2, which in turn enhances proteasome function. ▌Niacinamide: Supports proteasome function and improves skin barrier health. In-office treatments: ▌Low-level laser therapy: May improve proteasome function in skin cells. ▌Chemical peels: Can stimulate cellular renewal and potentially enhance proteasome activity. MISCELLANEOUS PROTEASOME FACTS ▌Ancient origins: Proteasomes are found in all three domains of life (bacteria, archaea, and eukaryotes), suggesting they evolved over 2 billion years ago. ▌Rapid recyclers: A single proteasome can degrade about 2 million proteins over its lifetime. ▌Circadian rhythm regulation: The proteasome plays a crucial role in maintaining our body's internal clock by degrading clock proteins at specific times. ▌Stress response: Under stress conditions, cells can form large assemblies of proteasomes called "proteasome storage granules" to quickly respond to changing protein degradation needs. The role of the proteasome in protein quality control, cellular regulation, interplay with autophagy, epigenetics, telomeres, cell senescence and more, makes it a key player in maintaining our health and beauty and an interesting target for new strategies to enhance longevity [28], health span and beauty span. Always consult a qualified healthcare professional to determine what the most suitable approach is for your needs and rejuvenation or regeneration goals. Take care! Anne-Marie References: [1] Glickman MH, Ciechanover A. Physiol Rev. 2002;82(2):373-428. [2] Lecker SH, et al. Annu Rev Biochem. 2006;75:629-649. [3] López-Otín C, et al. Cell. 2013;153(6):1194-1217. [4] Tanaka K. Proc Jpn Acad Ser B Phys Biol Sci. 2009;85(1):12-36. [5] Goldberg AL. Nature. 2003;426(6968):895-899. [6] Finley D. Annu Rev Biochem. 2009;78:477-513. [7] Pickart CM, Cohen RE. Nat Rev Mol Cell Biol. 2004;5(3):177-187. [8] Hershko A, Ciechanover A. Annu Rev Biochem. 1998;67:425-479. [9] Thrower JS, et al. EMBO J. 2000;19(1):94-102. [10] Smith DM, et al. Mol Cell. 2005;20(5):687-698. [11] Groll M, et al. Nature. 1997;386(6624):463-471. [12] Balch WE, et al. Science. 2008;319(5865):916-919. [13] Mizushima N, Komatsu M. Cell. 2011;147(4):728-741. [14] Dikic I. Trends Biochem Sci. 2017;42(11):873-886. [15] Ding WX, et al. Am J Pathol. 2007;171(2):513-524. [16] Zhao J, et al. Cell Metab. 2015;21(6):898-911. [17] Pandey UB, et al. Nature. 2007;447(7146):859-863. [18] Korolchuk VI, et al. Mol Cell. 2010;38(1):17-27. [19] Greer EL, Shi Y. Nat Rev Genet. 2012;13(5):343-357. [20] Qian MX, et al. Cell. 2013;153(5):1012-1024. [21] Muratani M, Tansey WP. Nat Rev Mol Cell Biol. 2003;4(3):192-201. [22] Gu B, Lee MG. Mol Cell. 2013;49(6):1134-1146. [23] Geng F, et al. Proc Natl Acad Sci USA. 2012;109(5):1437-1442. [24] Bach SV, et al. Biomol Concepts. 2016;7(4):215-227. doi:10.1515/bmc-2016-0016 [25] Bonea D, et al. BMC Plant Biol. 2021;21:486. doi:10.1186/s12870-021-03234-9 [26] Minoretti P, et al. Cureus. 2024;16(1):e52548. doi:10.7759/cureus.52548 [27] Groll M, et al. Nat Struct Biol. 2005;12(11):1062-1069. doi:10.1038/nsmb1006 [28] Galatidou S, et al. Mol Hum Reprod. 2024;30(7):gaae023. doi:10.1093/molehr/gaae023 [29=41] Queisser MA, et al. Hyperglycemia impairs proteasome function by methylglyoxal. Diabetes. 2010 [28=42] Mao, Y. Structure and Function of the 26S Proteasome. In: Harris, J.R., Marles-Wright, J. Macromolecular Protein Complexes III. Springer, 2021. [29=43] Schipper-Krom, S. Visualizing Proteasome Activity and Intracellular Localization. Front. Mol. Biosci. 6, 2019. [30=44] Lifespan.io. Loss of Proteostasis. Lifespan.io Topics. Accessed 2024.
Autophagy was initially classified under "altered proteostasis" as part of the hallmarks of aging. However as autophagy is involved in various other aspects of aging, such as DNA repair and metabolism, it's now seen as an "integrative hallmark". Autophagy is the cell´s way of cleaning up and recycling it´s own parts to maintain health and efficiency [1] by breaking down various parts of the cell, such as proteins, fats, and small structures called organelles. This breakdown happens in special compartments within the cell called lysosomes, which contain enzymes that can digest these cellular components. Impaired autophagy is a cause of aging and not just a consequence. When the efficiency of autophagy declines, it contributes to the accumulation of damaged cellular components, affecting other hallmarks of aging and the progression of health and beauty (skin health) problems [1][2].
SIMPLIFIED HOW AUTOPHAGY WORKS
▌Initiation: The process begins when a cell is under stress, such as during nutrient deprivation or oxidative stress. ▌Formation of the autophagosome: A double-membrane structure called a phagophore forms and expands to engulf damaged or unnecessary cellular components. ▌Encapsulation: The phagophore completely surrounds the targeted cellular material, forming a sealed vesicle called an autophagosome. ▌Fusion with lysosome: The autophagosome travels through the cell and fuses with a lysosome, forming an autophagolysosome - see picture below ▌Breakdown and recycling: Inside the autophagolysosome, lysosomal enzymes break down the captured cellular material into basic building blocks like amino acids, fatty acids, and nucleotides. ▌Reuse of materials: The broken-down components are released back into the cell's cytoplasm, where they can be reused to build new cellular structures or generate energy. THREE MAIN TYPES OF AUTOPHAGY (illustration) A. Macroautophagy: The most common form, involving the formation of autophagosomes that engulf cellular components and fuse with lysosomes for degradation. B. Chaperone-mediated autophagy: Selective degradation of specific proteins with the help of chaperone proteins. D. Microautophagy: Direct engulfment of cytoplasmic material by lysosomes. Various impairments in these autophagy mechanisms can occur: ▌Autophagosome formation ▌Decreased lysosomal function ▌Impaired fusion of autophagosomes with lysosomes ▌Accumulation of non-degradable material in lysosomes These impairments lead to the accumulation of damaged cellular components, contributing to the aging process. CONSEQUENCES DECLINE AUTOPHAGIC ACTIVITY
GENERAL CAUSES IMPAIRED AUTOPHAGY - HEALTH
Disruption of key regulatory pathways Autophagy is tightly regulated by several molecular pathways, and disruption of these can impair the process: ▌Nutrient sensing pathways: Inhibition of AMPK and SIRT1 or activation of mTOR can suppress autophagy initiation [1][5]. ▌Mutations affecting proteins like ULK1, Atg13, or other autophagy-related genes can disrupt autophagosome formation [5]. ▌Dysregulation of transcription factor TFEB, which controls expression of autophagy and lysosomal genes, can impair the process [1][5]. Defects in autophagosome formation or maturation Problems with the machinery involved in forming or maturing autophagosomes can impair autophagy: ▌Disruption of membrane sources like the ER or mitochondria can affect autophagosome formation [6]. ▌Mutations affecting proteins involved in autophagosome-lysosome fusion, like Dynein, can block completion of autophagy [6]. Lysosomal dysfunction Since lysosomes are crucial for the degradation step of autophagy, lysosomal defects can severely impair the process: ▌Lysosomal storage disorders, like Pompe disease, directly impair the degradative capacity of lysosomes [1]. ▌Accumulation of undegraded material in lysosomes can overwhelm their function over time [1]. Cellular stress and damage Various cellular stressors can both induce and potentially overwhelm autophagy: ▌Oxidative stress and mitochondrial dysfunction can both trigger and potentially impair autophagy if severe [7][8]. ▌Accumulation of protein aggregates, as seen in neurodegenerative diseases, can overwhelm autophagic capacity [6][7]. Metabolic imbalances Disruptions in cellular metabolism can impair autophagy: ▌Chronic exposure to excess nutrients, like in obesity or alcoholic liver disease, can suppress autophagy through mTOR activation [1][5]. ▌Energy deficits can potentially impair autophagy if severe enough to disrupt basic cellular functions [5]. In many cases, impaired autophagy results from a combination of these factors, often creating a vicious cycle where initial dysfunction leads to further cellular stress and damage, progressively worsening autophagic impairment over time [1][7][8]. This is particularly evident in age-related and neurodegenerative diseases, where multiple factors converge to disrupt cellular homeostasis and autophagic function. SKIN AGING Autophagy impairment contributes significantly to skin aging through multiple mechanisms: [9] ▌Reduced collagen and elastin production by fibroblasts ▌Accumulation of damaged ECM components ▌Altered keratinocyte differentiation and reduced barrier function (thinning) ▌Reduced stem cell function and altered cellular metabolism ▌Accumulation of cellular damage and reduced stress resistance Impaired autophagy in fibroblasts and keratinocytes leads to wrinkles and reduced skin elasticity [10][11] and more visible signs of aging skin. SKIN SPECIFIC CAUSES IMPAIRED AUTOPHAGY - BEAUTY Autophagy decline was observed in both intrinsic and extrinsic skin aging [12]. Oxidative stress and environmental factors Skin cells are constantly exposed to environmental stressors that can impair autophagy: ▌Ultraviolet (UV) radiation is a major factor that can disrupt autophagy in skin cells, particularly keratinocytes and melanocytes [13][14]. ▌Reactive oxygen species (ROS) generated from various environmental factors can deactivate key autophagy regulators like Akt and mTORC1, leading to impaired autophagy initiation [15]. Aging and senescence As skin cells age, their autophagic capacity tends to decline: ▌Premature skin aging is associated with decreased autophagy in various skin cell types [13]. ▌Senescence of mesenchymal cells in the dermis is linked to impaired autophagy and contributes to skin aging [14]. Dysregulation of autophagy pathways Several molecular pathways can become dysregulated, leading to impaired autophagy: ▌Mutations or alterations in autophagy-related genes (ATGs) can disrupt the formation of autophagosomes and impair the process [15][16]. ▌Dysfunction of the mTORC1 signaling pathway, a key regulator of autophagy, can lead to autophagy impairment [17]. Cellular energy imbalances Disruptions in cellular metabolism can impair autophagy in skin cells: ▌Low cellular energy levels (high AMP/ATP ratio) can abnormally trigger AMPK activation, disrupting normal autophagy regulation [17]. ▌Nutrient imbalances can affect mTORC1 activity, which is crucial for proper autophagy function [17]. Inflammatory processes Chronic inflammation in the skin can interfere with normal autophagy: ▌Inflammatory skin conditions like psoriasis and atopic dermatitis are associated with impaired autophagy in various skin cell types [16][17]. Lysosomal dysfunction Since lysosomes are crucial for the final stages of autophagy, their dysfunction can severely impair the process: ▌Accumulation of undegraded material in lysosomes, which can occur with aging or in certain skin conditions, can overwhelm lysosomal function and impair autophagy completion [15][14]. ROLE OF UV AND BLUE LIGHT IN AUTOPHAGY IMPAIRMENT IMPLICATIONS FOR SKIN HEALTH AND PHOTOAGING UV Radiation and autophagy: UV exposure has a complex effect on autophagy in skin cells. Acute UV exposure activates autophagy as a protective mechanism. This process helps degrade oxidized lipids and metabolic wastes, potentially slowing photoaging. However, chronic UV exposure leads to autophagy impairment and accelerated skin aging [13]. UV radiation modulates several signaling pathways involved in regulating autophagy: [14] [18] 1. mTOR (mechanistic target of rapamycin): A negative regulator of autophagy 2. AMPK (AMP-activated protein kinase): Promotes autophagy 3. PI3K/Akt pathway: Influences autophagy regulation 4. p53: Plays a role in UV-induced autophagy response UV exposure also affects the expression and activity of autophagy-related genes like Atg5, Atg7, and LC3 [14]. The UV-induced DNA damage and oxidative stress contribute significantly to autophagy dysfunction over time. Blue light and autophagy: ▌Blue light induces approximately 50% of the oxidative stress in skin cells compared to UV. ▌It penetrates deeper into the skin, affecting both epidermal keratinocytes and dermal fibroblasts. ▌Prolonged exposure may lead to autophagy impairment, contributing to premature skin aging and pigmentation issues. Molecular mechanisms and key players: [14] Several molecular mechanisms and key players are involved in the UV-autophagy relationship:
AUTOPHAGY AND DNA REPAIR Autophagy plays a crucial role in maintaining cellular homeostasis and genomic stability, particularly in skin health and DNA repair [19]. When UVB radiation hits our skin, it activates AMPK, which in turn boosts the autophagy process in our cells [18]. This mechanism is essential for repairing various types of DNA damage, including broken DNA strands, small structural changes, and errors that occur during DNA replication [20]. Autophagy positively regulates the recognition of DNA damage by nucleotide excision repair (NER) and enhances the repair of UV-induced lesions, particularly through the removal of oxidized proteins and lipids [21]. By responding to various DNA lesions and regulating multiple aspects of the DNA damage response (DDR), autophagy helps maintain the integrity of our genetic material and promotes overall skin health. IMPACT ON SKIN CELLS The skin, being the largest organ, is significantly affected by impaired autophagy, which impacts various skin cells differently, leading to visible signs of aging such as wrinkles, reduced skin thickness, and pigmentation changes. Ethnic differences in autophagy capacity may influence susceptibility to skin damage [12]. Autophagy has different effects in three categories of skin cells: [13] ▌stem cells: autophagy supports self-renewal and quiescence. Declining autophagy can lead to stem cell loss over time. ▌short-lived differentiating cells: like keratinocytes, autophagy contributes to differentiation processes like cornification but is less impacted by aging. ▌long-lived differentiated cells (hair follicles and sweat glands): autophagy maintains cell survival and function. Decreased autophagy leads to accumulation of damaged components. The roles of autophagy in skin aging are complex and cell type-specific [13]. Keratinocytes Keratinocytes, the primary cell type in the epidermis, rely heavily on autophagy for differentiation and barrier function [16]. Different autophagy proteins showed distinct localization patterns in the epidermis [12]. LC3 and ATG9L1 were enriched in granular layers, while ATG5-ATG12 and ATG16L1 were in basal/spinous layers [12]. Autophagy plays a critical role in keratinocyte cornification, the process by which these cells form the outermost layer of the skin. Autophagy protects keratinocytes against UV-induced DNA damage and inflammation, potentially slowing photoaging [13]. Impaired autophagy in keratinocytes can lead to: ▌Reduced barrier function ▌Increased susceptibility to environmental stressors [14] ▌Altered epidermal differentiation ▌Accumulation of damaged proteins and organelles ▌Increased DNA damage, senescence, and aberrant lipid composition after oxidative stress [14][22]. mTOR inhibition directly promoted keratinocyte differentiation [12]. Fibroblasts Dermal fibroblasts are responsible for producing extracellular matrix (ECM) components, including collagen and elastin. Fibroblast autophagy helps clear lipofuscin (age pigment) and damaged proteins that accumulate with age. Autophagy impairment in fibroblasts can result in: ▌Reduced proteostasis and ECM production (collagen and elastin production) [13] ▌Accumulation of senescent cells and DNA damage [13] ▌Increased matrix metalloproteinase (MMP) activity, leading to ECM degradation ▌Altered cellular metabolism and energy production ▌Accumulation of autophagosomes, resulting in the deterioration of dermal integrity and skin fragility [10][11] These changes contribute to the formation of wrinkles and loss of skin elasticity [14]. Melanocytes Melanocytes, responsible for skin pigmentation, are particularly sensitive to autophagy impairment [13]. Autophagy defects disturb melanosome biogenesis and transport, leading to pigmentation disorders. Autophagy-deficient melanocytes display a senescence-associated secretory phenotype (SASP), contributing to inflammation and pigmentation changes [23]. Declining melanocyte autophagy may contribute to age-related pigmentation changes and hair graying. The consequences of impaired autophagy: ▌Accumulation of damaged melanosomes ▌Altered melanin production and distribution ▌Increased susceptibility to oxidative stress, inflammation and senescence ▌Pigmentation disorders like vitiligo and hyperpigmentation Stem cells Skin stem cells, including those in hair follicles and the interfollicular epidermis, rely on autophagy for maintenance and function. Impaired autophagy in stem cells can lead to: ▌Reduced self-renewal capacity ▌Altered differentiation potential ▌Accumulation of damaged cellular components ▌Premature stem cell exhaustion These effects contribute to reduced skin regeneration and repair capacity with age [14]. Sweat glands and sebaceous glands Autophagy is essential for normal sebum production in sebaceous glands (long-lived cells) and in sweat glands suppresses accumulation of lipofuscin ("age pigment") during aging and maintains gland function [13]. Autophagy plays a crucial role in the function of sweat glands and sebaceous glands. Impairment can result in: ▌Reduced sweat production, affecting thermoregulation ▌Altered sebum composition and production - can affect skin barrier function and contribute to conditions like acne [24] ▌Increased susceptibility to infections and skin disorders Merkel cells Autophagy regulates serotonin signaling in Merkel cells and may impact age-related changes in touch sensation [13]. Hair follicles In hair follicles, (long lived cells) autophagy promotes hair growth [14] and may counteract age-related hair loss when pharmacologically activated [13]. PIGMENTATION Dysregulation of autophagy in melanocytes affects melanin synthesis and transfer, leading to pigmentation disorders [23]. Autophagy activity correlates with skin lightness measurements and plays a role in melanosome degradation in keratinocytes . autophagy proteins like LC3, p62, ATG9L1, ATG5-ATG12 and ATG16L1 were decreased in hyperpigmented skin, while mTORC1 activity was increased in hyperpigmented elbow skin [12]. Autophagy impairment can lead to various pigmentation disorders: [12] ▌Hyperpigmentation: Accumulation of damaged melanosomes and altered melanin distribution ▌Hypopigmentation: Potential link to vitiligo through increased melanocyte sensitivity to oxidative stress ▌Uneven skin tone: Dysregulation of melanin production and transfer to keratinocytes Restoring autophagy (inhibiting mTORC1 with Torin 1) improved both pigmentation (maintaining skin color uniformity) and epidermal differentiation (barrier function) [12] and could be a therapeutic approach for photoaging and hyperpigmentation. PIGMENTATION ISSUES 1. Senile Lentigo (Age Spots): Studies have shown that autophagy declines in hyperpigmented skin areas such as senile lentigocompared to even-toned skin [12]. This decline in autophagy is associated with increased melanin deposition and melanocyte proliferation in the epidermis [13]. The impaired autophagy in these areas also correlates with reduced levels of late epidermal differentiation markers like filaggrin and loricrin [13]. 2. Photoaging: Ultraviolet (UV) radiation, a major cause of photoaging, affects autophagy in skin cells. While UV exposure initially increases autophagy as a protective mechanism, chronic exposure leads to impaired autophagic function. This impairment contributes to the accumulation of damaged cellular components and oxidized proteins, accelerating the photoaging process [14][12]. 3. Xerotic hyperpigmentation: In areas of skin with severe xerosis (dry skin) and hyperpigmentation, an exacerbated decline in autophagy has been observed. This decline is accompanied by severe dehydration and barrier defects, showing correlations with deteriorating skin physiological conditions [13]. The impaired autophagy in these areas contributes to both pigmentation abnormalities and compromised epidermal differentiation. These examples demonstrate that impaired autophagy is associated with various aspects of skin aging, including pigmentation changes, barrier function decline, and altered epidermal differentiation. The decline in autophagic activity appears to be both a result of aging processes and a contributing factor to the progression of skin aging symptoms [12][13][14]. SOLAR ELASTOSIS Solar elastosis is characterized by the accumulation of abnormal elastotic material (broken elastin fibres due to sun damage) in the dermis. While not directly linked to impaired autophagy, the loss of autophagy and/or it's housekeeping partner proteasome could be a contributing factor. 1. Autophagy is crucial for cellular homeostasis: Autophagy is described as "an essential cellular process that maintains balanced cell life" and is responsible for "clearing surplus or damaged cell components notably lipids and proteins" [12]. 2. Impaired autophagy in photoaging: Loss of autophagy leads to both photodamage and the initiation of photoaging in UV exposed skin [12][18]. 3. UV radiation affects autophagy: UV exposure can both stimulate and impair autophagy, depending on the circumstances. For example, repeated UVA radiation negatively affects the autophagy process in fibroblasts due to modifications in lysosomal functioning [25]. 4. Accumulation of damaged components: When autophagy is impaired, there's a reduced ability to clear damaged cellular components. This could include broken down elastin fibres. The proteasome and autophagy work closely together in cleaning up and recycling proteins like elastin. 5. Chronic inflammation: Photoaging is characterized by a chronic inflammatory response, which can be exacerbated by defects in autophagy. In turn, defects in autophagy have also been shown to cause severe inflammatory reaction in the skin [12]. AUTOPHAGY FAT CELLS Autophagy in fat cells, or adipocytes, plays a significant role in regulating adipose tissue biology and metabolism. 1. Role in adipose tissue biology: Autophagy is crucial for maintaining cellular homeostasis in adipose tissue by degrading and recycling cellular components. It influences adipogenic differentiation and affects the size and function of adipose tissue depots [26]. 2. Influence of obesity: In obesity, autophagy is often altered. Adipocytes in obese individuals show increased autophagic activity, which is associated with enhanced lipid mobilization and metabolic activity [27]. This process can be influenced by proinflammatory cytokines, leading to selective degradation of lipid droplet proteins like Perilipin 1 [27]. 3. Adipocyte browning: Autophagy is involved in the browning of white adipose tissue, which is associated with increased energy expenditure and protection against obesity [28]. Suppression of autophagy can block adipogenesis and lipid accumulation, indicating its role in fat storage and metabolism [28]. 4. Response to fasting: During fasting, autophagy is upregulated in adipose tissue to promote fat breakdown and support metabolic processes like ketogenesis [29]. This response involves the regulation of genes that influence autophagic activity. 5. Regulation by mTOR: The mTOR signaling pathway is a major regulator of autophagy in adipocytes. Under conditions of nutrient deprivation or stress, mTOR activity is inhibited, leading to the activation of autophagy [17]. AUTOPHAGY AND INSULIN RESISTANCE Activation of autophagy is beneficial for improving insulin sensitivity without compromising insulin production [30][31]. Impaired autophagy as a cause of insulin resistance 1. Accumulation of cellular debris: When autophagy is impaired, damaged organelles and proteins accumulate in cells, leading to cellular stress and inflammation that can contribute to insulin resistance [32]. 2. ER stress: Autophagy inhibition can cause severe endoplasmic reticulum stress in adipocytes, which can suppress insulin receptor signaling and contribute to peripheral insulin resistance [33]. 3. Mitochondrial dysfunction: Impaired autophagy can lead to accumulation of damaged mitochondria, which can disrupt cellular metabolism and contribute to insulin resistance [32]. 4. Reduced insulin signaling: Knockdown of autophagy genes like Atg7 in adipocytes can reduce insulin-stimulated phosphorylation of insulin receptor subunits and IRS-1, directly impairing insulin signaling [33]. Insulin resistance as a cause of impaired autophagy 1. Hyperinsulinemia: Chronic exposure to high insulin levels, as seen in insulin-resistant states, can suppress autophagy through activation of mTORC1 and inhibition of FoxO1 [30]. 2. Nutrient excess: The excess nutrients associated with obesity and insulin resistance can inhibit autophagy through mTORC1 activation [32][33]. 3. Altered gene expression: Insulin resistance can downregulate the expression of genes encoding major autophagy components, further impairing autophagic function [34]. Bidirectional relationship The relationship between insulin resistance and impaired autophagy often creates a vicious cycle: 1. Initial insulin resistance can lead to suppression of autophagy. 2. Impaired autophagy then exacerbates cellular stress and dysfunction. 3. This cellular dysfunction further worsens insulin resistance. 4. The cycle continues, progressively worsening both conditions [32][33]. Tissue-specific effects The relationship between autophagy and insulin sensitivity can vary depending on the tissue: 1. In insulin-responsive tissues like muscle, liver, and adipose tissue, moderate activation of autophagy can improve insulin sensitivity by reducing cellular stress and inflammation [30][32]. 2. In pancreatic β-cells, however, excessive autophagy can reduce insulin storage and secretion, potentially worsening glucose intolerance despite improved peripheral insulin sensitivity [30]. PREVENTION AND TREATMENT OPTIONS Targeting nutrient-sensing pathways (mTORC1, AMPK, SIRT1) can enhance autophagic activity and mitigate age-related cellular damage [4][35][36] The most efficient and evidence-based methods to improve autophagy are: 1. Intermittent fasting (IF): ▌The 16/8 method (16 hours fasting, 8 hours eating window) is commonly recommended [37][38]. ▌Alternate-day fasting and the 5:2 diet (5 days normal eating, 2 days restricted calories) are also effective [38][39]. ▌Fasting periods of 18-72 hours show increasing benefits for autophagy [37]. Fasting a lot is not recommended for women in their reproductive age, the use of geroprotectors (a few mentioned under point 6) are more suitable. 2. Calorie restriction (CR): [4] ▌Reducing daily calorie intake by 10-40% can trigger autophagy [38]. ▌Long-term calorie restriction increases the expression of autophagy-related genes [40]. 3. Exercise: [4] ▌Both aerobic exercise and resistance training stimulate autophagy [37][41]. ▌Aerobic exercise (lower intensity, longer duration) may be more effective for autophagy than high-intensity exercise [37]. 4. Ketogenic diet: ▌A high-fat, low-carb diet can mimic fasting effects and trigger autophagy [41]. 5. Sleep: ▌Good quality sleep supports autophagy, as it follows the sleep-wake cycle [41]. 6. Specific nutrients and supplements: ▌Spermidine (naturally occurring in our body and food) has been shown to enhance autophagy [40][42] and is on top of the list. ▌Resveratrol, found in red wine and grapes, may induce autophagy [40] (in very high doses), however there are contradicting study outcomes. ▌Curcumin (from turmeric) has shown potential in animal studies [41]. ▌Green tea contains compounds that may support autophagy [40]. ▌GlyNAC - more information below 7. Stress management: ▌Chronic stress can interfere with autophagy, so stress reduction techniques like meditation or yoga may be beneficial [38]. 8. Pharmacological Interventions: ▌Several antidiabetic medicines and other pharmacological agents are being explored to modulate autophagy and slow aging [3][4]. ▌Genetic approaches to upregulate autophagy-related genes (e.g., ATG7, BECN1) are being investigated as potential therapeutic strategies for neurodegenerative diseases [35][43]. 9. Hormetic stress activates autophagy: Hormesis influences and activates autophagy through various mechanisms, contributing to cellular stress resistance and potential health benefits. ▌Hormesis appears to be executed by a variety of physiological cellular processes, including autophagy that cooperatively interact and converge [44]. ▌Hormetic heat shock activates autophagy in human RPE cells [45]. Heat shock factor 1 (HSF1) plays a role in hormetic autophagy activation [46=73]. HHS enhances the expression of fundamental autophagy-associated genes in ARPE-19 cells through the activation of HSF1 [45]. ▌Inhibition of mTOR (mechanistic target of rapamycin) is a key pathway for hormetic autophagy activation. Inhibition of mTOR (specifically dephosphorylation of mTOR complex 1) triggers augmented autophagy [44]. ▌Hormetic autophagy contributes to stress resistance, longevity, and improved proteostasis [46]. 10. Sunscreen: I promote the use of sunscreens, particularly ones with the natural compounds Licochalcone A (powerful anti-oxidant, Nrf2 activator, Glutathione stimulator and MMP1 inhibitor) [47][48][49][50] and Glycerrhetinic Acid (supports DNA repair) [51]. The regular use of sunscreen can decrease the risk of impaired autophagy in skin: ▌Reduction of oxidative stress: By blocking UV rays, sunscreen helps prevent the generation of excessive ROS, which can impair autophagy [18]. ▌Prevention of DNA damage: Sunscreen protects skin cells from UV-induced DNA damage, which can interfere with autophagy-related gene expression [18][21]. ▌Maintenance of cellular homeostasis: By reducing overall UV-induced stress on skin cells, sunscreen helps maintain the balance necessary for proper autophagy function [21]. Several studies have demonstrated the link between UV protection and autophagy preservation. A study published in the Journal of Investigative Dermatology showed that UV radiation can dysregulate autophagy in skin cells, and that protecting against UV exposure can help maintain normal autophagy function [21]. Research published in the International Journal of Molecular Sciences highlighted that sunscreen use can prevent UV-induced damage to autophagy-related proteins and pathways in skin cells [18]. A review in Frontiers in Pharmacology discussed how sunscreen, as part of a comprehensive photoprotection strategy, can help preserve autophagy function in skin by reducing overall UV-induced cellular stress [21]. By using sunscreen regularly, individuals can significantly reduce their risk of impaired autophagy in skin cells, contributing to overall skin health and slowing the photoaging process. 11. Red light therapy: Red light therapy, particularly at a wavelength of 660 nm, has been shown to promote autophagy, the cellular process of cleaning out damaged cells and regenerating healthier ones. Studies indicate that this therapy can enhance autophagy in various contexts, such skin health [57]. Additionally, red light therapy is often used in combination with fasting to further boost cellular repair processes associated with autophagy. Red light activates autophagy in retinal cells: Studies have shown that red light exposure can activate multiple steps of the autophagy process in retinal pigment epithelium (RPE) cells. It increases autophagy-related proteins and promotes the formation of autophagosomes [58]. 12. Polynucleotides: 1. DNA damage response: DNA damage can trigger autophagy as a protective mechanism. Polynucleotides, particularly damaged DNA, can activate autophagy pathways [59]. 2. RNA-mediated regulation: Certain RNA molecules, such as microRNAs and long non-coding RNAs, can modulate autophagy-related gene expression and signaling pathways [59]. 13. Exosomes: Exosomes have a complex relationship with autophagy: 1. Autophagy regulation: Exosomes can carry proteins and RNAs that influence autophagy in recipient cells. For example, some exosomal microRNAs can target autophagy-related genes [59]. 2. Protein content alteration: Autophagy modulators can significantly alter the protein content of phosphatidylserine-positive extracellular vesicles (PS-EVs), including exosomes, produced by cancer cells [59]. 3. Signaling molecules: Exosomes can contain important signaling molecules like SQSTM1 and TGFβ1 pro-protein, which are involved in autophagy regulation [59]. 4. Intercellular communication: Exosomes derived from cells treated with autophagy modulators can influence the metabolism and phenotype of recipient cells [59]. 5. Autophagy-related protein transport: Exosomes can carry autophagy-related proteins like LC3-II, potentially transferring autophagic capabilities between cells [59]. The relationship between exosomes and autophagy is bidirectional. Autophagy can also influence exosome production and content. The specific effects may vary depending on the cell type, physiological context, and the particular polynucleotides or exosomes involved. GLYNAC AND AUTOPHAGY GlyNAC, a combination of glycine and N-acetylcysteine, has shown promising effects on various aspects of cellular health, including autophagy. Glutathione synthesis and oxidative stress GlyNAC supplementation has been shown to improve glutathione (GSH = body's master antioxidant) synthesis and reduce oxidative stress [52][53][54]. GSH is a crucial antioxidant that plays a role in regulating autophagy and DNA repair. By improving GSH levels, GlyNAC may indirectly support autophagic processes [52][53]. Aging hallmarks GlyNAC supplementation has been shown to improve multiple hallmarks of aging, including mitochondrial dysfunction, oxidative stress, and inflammation [52][53][54].[55].These improvements may indirectly support autophagic processes, as these hallmarks are interconnected with autophagy regulation [1][2]. Direct evidence on autophagy While direct evidence of GlyNAC's effect on autophagy is limited, some studies provide insights: 1. In a study on HIV patients, GlyNAC supplementation improved mitophagy markers, suggesting a potential role in enhancing selective autophagy of mitochondria [53]. 2. N-acetylcysteine, a component of GlyNAC, has been shown to induce autophagy in various cellular models, potentially through its antioxidant properties and effects on mTOR signaling [56]. Potential mechanisms The potential mechanisms by which GlyNAC might influence autophagy include: 1. Reduction of oxidative stress, which can promote autophagy induction [52][53][54]. 2. Improvement of mitochondrial function, which is closely linked to mitophagy regulation [7][8][52][53]. 3. Modulation of nutrient-sensing pathways, such as mTOR, which are key regulators of autophagy [53][56]. Future directions While the evidence suggests that GlyNAC supplementation may have beneficial effects on cellular processes related to autophagy, more direct research is needed to fully elucidate its impact on autophagic flux and regulation. By improving autophagy, we're not just investing in our appearance, but in the fundamental processes that keep our body healthy. Always consult a qualified healthcare professional to determine what the most suitable approach is for your needs and rejuvenation or regeneration goals. Take care! Anne-Marie
References:
[1] Aman, Y., et al. (2021). Autophagy in healthy aging and disease. Nature Aging, 1(8), 634-650. [2] Rubinsztein, D. C., et al. (2011). Autophagy and aging. Cell, 146(5), 682-695. [3] Kaushik, S. et al. (2021). Autophagy and the hallmarks of aging. Ageing Research Reviews, 72. [4] Kitada, M., & Koya, D. (2021). Autophagy in metabolic disease and ageing. Nature Reviews Endocrinology, 17, 647 - 661. [5] Ichimiya T et al. Autophagy and Autophagy-Related Diseases: A Review. Int J Mol Sci. 2020 [6] Budini M. et al. Front. Mol. Neurosci. Autophagy and Its Impact on Neurodegenerative Diseases: New Roles for TDP-43 and C9orf72 (2017). [7] Niture S. et al. Int. J. Hepatol. Emerging Roles of Impaired Autophagy in Fatty Liver Disease and Hepatocellular Carcinoma (2021) [8] Edens B.M. et al. Front. Cell. Neurosci. Impaired Autophagy and Defective Mitochondrial Function in Motor Neuron Degeneration (2016) [9] Jeong D et al. The Role of Autophagy in Skin Fibroblasts, Keratinocytes, Melanocytes, and Epidermal Stem Cells. J Invest Dermatol. 2020 [10] Kim H et al. (2018). Autophagy in Human Skin Fibroblasts: Impact of Age. International Journal of Molecular Sciences, 19 [11] Tashiro K. et al. Biochem. Biophys. Res. Commun. Age-related disruption of autophagy in dermal fibroblasts modulates ECM (2014) [12] Wang M et al. Autophagy: Multiple Mechanisms to Protect Skin from Ultraviolet Radiation-Driven Photoaging. Oxid Med Cell Longev. 2019 [13] Murase D. et al. Int. J. Mol. Sci. Autophagy Declines with Premature Skin Aging Altering Skin Pigmentation and Epidermal Diff. (2020). [14] Eckhart Leopold, Tschachler Erwin , Gruber Florian Autophagic Control of Skin Aging Frontiers in Cell and Developmental Biology 2019 [15] Lin Y. et al. Front. Immunol. The multifaceted role of autophagy in skin autoimmune disorders (2024). [16] Kim HJ, Park J, Kim SK, Park H, Kim JE, Lee S. Autophagy: Guardian of Skin Barrier. Biomedicines. 2022 [17] Klapan K, Simon D, Karaulov A, Gomzikova M, Rizvanov A, Yousefi S, Simon HU. Autophagy and Skin Diseases. Front Pharmacol. 2022 [18] Ma J et al. Autophagy plays an essential role in ultraviolet radiation-driven skin photoaging. Front Pharmacol. 2022 [19] Gomes LR, Menck CFM, Leandro GS. Autophagy Roles in the Modulation of DNA Repair Pathways. Int J Mol Sci. 2017 [20] Umar S.A. et al. RSC Adv. Integrating DNA damage response and autophagy in UV-B induced skin photo-damage (2020). [21] Zhong X. et al. Medicine. Role of autophagy in skin photoaging: A narrative review (2024). [22] Song X. et al. Redox Biol. Autophagy deficient keratinocytes show increased DNA damage and senescence after oxidative stress (2016). [23] Ni C. et al. Int. J. Biochem. Cell Biol. Autophagy deficient melanocytes display SASP with oxidized lipid mediators (2016). [24] Rossiter H. et al. Exp. Dermatol. Inactivation of autophagy changes sebaceous gland morphology and function (2018). [25] Gromkowska-Kępka K.J. et al. J. Cosmet. Dermatol. The impact of ultraviolet radiation on skin photoaging: in vitro studies review (2021). [26] Romero M, Zorzano A. Role of autophagy in the regulation of adipose tissue biology. Cell Cycle. 2019 [27] Ju L. et al. Cell Death Dis. Obesity-associated inflammation triggers autophagy-lysosomal response in adipocytes (2019) [28] Seung-Hyun Ro et al. Front. Physiol., 28 January 2019 Autophagy in Adipocyte Browning: Emerging Drug Target for Intervention in Obesity [29] Furthering fat loss in the fasting response - EurekAlert! Peer reviewed publication Osaka University 2022 [30] Yamamoto S et al. Autophagy Differentially Regulates Insulin Production and Insulin Sensitivity. Cell Rep. 2018 [31] Ning Wang et al. Autophagy: Playing an important role in diabetes and its complications, Medicine in Drug Discovery 2024 [32] Frendo-Cumbo S. et al. Front. Cell Dev. Biol. Communication Between Autophagy and Insulin Action (2021). [33] Budi Y.P. et al. PeerJ. Autophagy's role in high-fat diet-induced insulin resistance in mouse adipose tissues (2022). [34] Kezhong Zhang; “NO” to Autophagy: Fat Does the Trick for Diabetes. Diabetes 1 February 2018 [35] Uddin M. et al. Front. Aging Neurosci. Autophagy and Alzheimer's Disease: Mechanisms to Therapeutic Implications (2018). [36] Cheon S. et al. Exp. Neurobiol. Autophagy, Cellular Aging and Age-related Human Diseases (2019) [37] Al-Bari M. et al. Int. J. Mol. Sci. Targeting Autophagy with Natural Products for Cancer Therapy (2021) - dr Erik Berg Youtube 2023 [38] InsideTracker. Autophagy Fasting: What You Should Know Before Starting Your Fast (2024) [39] Life MD Autophagy Fasting: What You Need to Know Before Starting Jeffrey Vacek, DNP, FNP-C 2023 [40] DECODE AGE Autophagy: Definition, Process, causes & Supplements Dec 20, 2023 By Madhulatha Kesam Reddy Naga [41]. MedicineNet How Do You Trigger Autophagy? Medical Author: Dr. Jasmine Shaikh, MD Medical Reviewer: Pallavi Suyog Uttekar, MD [42] Hofer, S.J.et al. Spermidine is essential for fasting-mediated autophagy and longevity. Nat Cell Biol 26, 1571–1584 (2024) [43] Tan C. et al. Neurobiol. Aging. Autophagy in aging and neurodegenerative diseases (2014) [44] Moore MN. Lysosomes, Autophagy, and Hormesis in Cell Physiology, Pathology, and Age-Related Disease. Dose Response. 2020 [45] Amirkavei M et al. Hormetic Heat Shock Enhances Autophagy through HSF1 in Retinal Pigment Epithelium Cells. Cells. 2022 [46] Kumsta C. et al. Nat. Commun. Hormetic heat stress and HSF-1 induce autophagy in C. elegans (2017) [47] Mann T. et al. Photodermatol. Photoimmunol. Photomed. HEVIS induces skin oxidative stress: Protective effects of Licochalcone A (2019) [48] Lim H.W. et al. J. Am. Acad. Dermatol. Impact of visible light on skin health: Antioxidants in skin protection (2022) [49] Ladewig S. et al. EADV Poster. Licochalcone A protects against HEV light-induced ROS and MMP-1 expression in vitro (2018) [50] Kühn J. et al. Exp. Dermatol. Licochalcone A activates Nrf2 and reduces cutaneous oxidative stress in vivo (2014) [51] Hong M. et al. J. Invest. Dermatol. Glycyrrhetinic Acid: Modulator of Skin Pigmentation and DNA-Repair (2009) [52] Kumar P. et al. Clin. Transl. Med. GlyNAC supplementation improves multiple aging-related deficits in older adults (2021) [53] Kumar P. et al. Clin. Transl. Sci. GlyNAC supplementation improves multiple aging-related deficits in older adults (2020) [54] Kumar P. et al. Antioxidants. GlyNAC improves mitochondrial function and insulin resistance in type 2 diabetes (2022) [55].Kumar P. et al. Nutrients. GlyNAC supplementation increases lifespan and corrects aging-related defects in mice (2021) [56] Sun Y. et al. CNS Neurosci. Ther. N-acetylcysteine induces mitochondria-dependent apoptosis in glioma cells (2016) [57] Yang KL et al. In vitro anti-breast cancer studies of LED red light therapy through autophagy. Breast Cancer. 2021 [58] Pinelli R. et al. Antioxidants. Light pulses and phytochemicals promote autophagy to counter oxidative stress in AMD (2023) [59] Hanelova K. et al. Cell Commun. Signal. Autophagy modulators affect signaling molecules in PS+ extracellular vesicles (2023) Circadian rhythms are biological processes linked to the cycles of the day. Many bodily functions vary according to these rhythms, including the following: ▌Body temperature ▌Pulse rate and blood pressure ▌Reaction time and performance ▌The production of melatonin, serotonin and cortisol ▌Intestinal activity Travellers who make frequent long-distance flights often have direct experience in the importance of getting acclimated to a new time zone. One’s inability to adjust can lead to sleeping problems and disturbances in cognitive functions. People who do shift work, or work under bright lights, can face similar issues. Problems arise whenever the daily rhythm is disturbed. Human beings have an internal clock that lasts about 25 hours and resets itself daily when it is exposed to daylight. Blind people can thus have sleeping problems, and yet, even without the ability to see sunlight, their bodies function mostly just fine. Light clearly has a central role in the regulation of our daily lives, and can be used to reset our circadian rhythms. SKIN & CIRCADIAN RHYTHMS Our skin follows a natural daily cycle, known as the circadian rhythm, which influences its functions at different times of the day. This rhythm helps the skin protect itself during the day and repair itself at night. Daytime: protection and vigilance During the day, your skin protects you from various environmental threats, such as harmful UV rays and pathogens. Thanks to the circadian rhythm, your skin's barrier becomes stronger, and its immune defences are on high alert. This means your skin is busy producing protective proteins and ramping up immune responses to keep everything in balance and prevent damage. Activities like cell growth and movement are more pronounced during the day, helping to maintain and repair your skin. Nighttime: repair, regeneration, and weaker barrier As night your skin switches to repair mode, focusing on fixing any damage it endured during the day, such as UV-induced DNA damage. The skin cells, particularly keratinocytes, follow a natural rhythm that boosts nighttime repair activities, including increased cell growth and improved barrier recovery. Clock genes like BMAL1 and PER play a vital role in timing these repair processes. During this repair phase, the skin's barrier becomes weaker: Slower barrier recovery: The skin takes longer to recover from any daytime damage or stress, leaving it more vulnerable. Higher permeability: While this allows skincare products to penetrate more deeply, it also means the skin is less effective at keeping out harmful substances and Transepidermal Water Loss (TEWL) is increased, meaning the skin is prone to lose more moisture and become dehydrated. Disruptions to this rhythm can impair skin function and accelerate aging, highlighting the importance of using the right nighttime skincare products to support the skin's barrier and hydration. The effects of blue light on circadian rhythms: A controversial topic Blue light, particularly in the 460-480 nm range, has long been considered a potent modulator of circadian rhythms. This short-wavelength light is abundant in sunlight and is also emitted in a very low dose by many electronic devices. The traditional view holds that exposure to blue light, especially in the evening, can disrupt circadian rhythms and negatively impact sleep quality. Traditional perspective Research has shown that blue light is particularly effective at suppressing melatonin production, a hormone crucial for regulating sleep-wake cycles [1]. Studies have demonstrated that exposure to blue light can phase-shift the human circadian clock more effectively than other wavelengths [2]. This has led to recommendations to limit blue light exposure from electronic devices before bedtime. Challenging the consensus However, recent research has challenged this established view. A study by researchers at the University of Basel suggests that the color of light may not significantly affect circadian rhythms [3]. Instead, they propose that the overall brightness of light plays a more significant role in influencing the internal clock. Sunscreen and skin circadian rhythms There is no direct information about the impact of sunscreen on circadian rhythms. UV radiation, which sunscreen blocks, can affect circadian rhythms. A study on keratinocytes showed that UVB radiation can suppress several genes involved in circadian rhythm regulation for up to 24 hours [4]. The skin has its own peripheral circadian clock [4]. While sunscreen protects against UV (and some sunscreens defend against blue light) damage, it's unclear if it directly affects this skin-specific circadian rhythm. I would consider a significant impact very unlikely, however am curious to see this backed up by scientific research. It's clear that light exposure, particularly its timing and intensity, plays a crucial role in regulating circadian rhythms and that circadian rhythms impact our skin and highly recommend daily use of sunscreen with UV protection and blue light defence. Take care! Anne-Marie References: [1] Ksendzovsky, A. et al. (2017). Clinical implications of the melanopsin-based non-image-forming visual system. Neurology, 88(13), 1282-1290 [2] Tosini, G. et al. (2016). Effects of blue light on the circadian system and eye physiology. Molecular Vision, 22, 61-72. [3] Spitschan, M. et al. (2023). Effects of calibrated blue–yellow changes in light on the human circadian system. Nature Human Behaviour [4] Hettwer, S. et al. (2020). Influence of cosmetic formulations on the skin's circadian clock. International Journal of Cosmetic Science [5] Desotelle, J. A. et al. (2012). The circadian control of skin and cutaneous photodamage. Photochemistry and Photobiology, 88(5), 1037-1047.
Blue light, is also known as high-energy visible (HEV) light and is the most energetic part of the visible light spectrum (380 - 700 nm) with wavelengths ranging from indigo or ultramarine light 420-440 nanometers, blue light 450-495 nanometers to cyan light 480 - 520 nanometers. Blue light has lower energy than ultraviolet (UV) radiation (280–400 nm) and can reach further into the dermis, up to the depth of 1 mm. [1] Sunlight is the primary natural source of blue light. Up to 50% of the damaging oxidative stress in human skin is generated in the VIS spectrum and the other 50% by UV light [2], contributing to premature ageing, ox-inflammageing and hyperpigmentation like age spots.
Blue light from electronic devices The use of electronic devices has led to increased exposure to artificial blue light sources, however the amount of blue light emitted during the conventional use of electronic devices is by far not enough to trigger harmful skin effects. If you sit in front of a monitor uninterrupted for a week at a distance from the screen of approximately 30 cm, this would be the same as the blue light intensity of spending one minute outside on a sunny day in Hamburg Germany at around midday at midsummer. If you hold a smartphone right next to the skin, the intensity does increase, but it would still take approximately 10 hours of uninterrupted use to match the effect on the skin of just one minute of sunlight. The emissions from electronic devices are barely noticeable in comparison to natural blue light directly from the sun and are, thus negligible. However, blue light or HEV light from sunlight can be harmful for skin. Dr Ludger Kolbe Chief Scientist for Photobiology and his team at Beiersdorf AG did pioneering research regarding the harmful effects of HEVIS. [3-4] I would also like to take the opportunity to debunk an important myth at the start of this article as infrared or near infrared light does not induce damaging free radicals (even in high amounts), there is no such thing "infra-ageing" as a result or IR and in fact red light photobiomodulation supports skin rejuvenation. Read more Direct effects of blue light and HEV Light on skin Blue light and HEV light can have both beneficial and detrimental effects on the skin. The most significant direct effects are mediated through their interaction with chromophores, such as flavins, porphyrins, and opsins, which can trigger the overproduction of reactive oxygen species (ROS), reactive nitrogen species (RNS). and hyperpigmentation. Reactive oxygen and nitrogen species cause DNA damage and modulate the immune response. [1] This oxidative stress can lead to: Photo-ageing: Exposure to blue light and HEV light can induce premature skin aging, causing wrinkles, fine lines, and loss of elasticity. Hyperpigmentation: Blue light and HEV light can stimulate melanin production, leading to uneven skin tone and the development of age spots or other forms of hyperpigmentation. DNA damage: The ROS and RNS generated by blue light and HEV light can cause DNA damage, plus potentially increase the risk of skin cancer. Inflammation: The oxidative stress triggered by blue light and HEV light can cause an inflammatory response in the skin, exacerbating conditions like acne, eczema, and psoriasis. Molecular and physiological mechanisms of direct blue light effects on the skin [1]
Indirect effects of blue light and HEV Light on skin Blue light and HEV light can also have indirect effects on the skin by disrupting the body's circadian rhythms. This occurs via both the central mechanism, which involves stimulation of light-sensing receptors located in the retina, and via the peripheral mechanism, which involves direct interaction with skin cells. By disrupting the normal circadian rhythm, blue light can negatively affect the skin's natural overnight repair and regeneration processes. [1] The circadian rhythm has been shown to affect multiple cellular and physiological processes occurring in the skin:
Molecular mechanisms of indirect effects of blue light on the skin [1]
Ideal daytime & nighttime skin care regimen When considering cosmetic interventions, a strategy of daytime protection plus defense and night-time repair may be optimal. The skin's own repair mechanisms, such as base excision repair and nucleotide excision repair, attempt to mitigate blue light induced DNA damage. [12] Daytime protection plus defense Of course prevention and/or reduction of blue light exposure from sunlight is key. Reduce the time spent on electronic devices, especially before bedtime, can help minimize the disruption of circadian rhythms and the indirect effects of blue light and HEV light on the skin. Against premature ageing and hyperpigmentation an evidence based effective approach could be the daily use of tinted broad-spectrum sunscreen preferably containing Licochalcone A (the most effective anti-oxidant reducing damaging free radical activity from both UV and blue light and moreover protects against collagenase MMP-1 expression) strengthening skin's biological defense [4-5-6-7], while iron oxides in colour pigments provide physical protection against blue light. Against hyperpigmentation there are (tinted) sunscreens which on top contain the most potent human tyrosinase inhibitor found in dermatological skin care called Thiamidol® [8-9] and one of the 3 ingredients in the "new Kligman Trio" (NT) [18] and Glycyrrhetinic Acid which supports skin's DNA repair and skin pigmentation [10] and inhibits hyaluronidase activity (HYAL1). Most regular sun filters used in sunscreen don't offer any protection against blue light, however according to the website of BASF the chemical UV filters Tinosorb® A2B and Tinosorb® M can reduce the exposure to blue light. [11] Ectoin or ectoine has shown positive effects against high-energy visible light by decreasing the levels of OPN3 or Opsin-3, a photoreceptor involved in light perception, after HEVL exposure, suggesting role in mitigating light-induced stress on skin cells. Although ectoin does not act as an anti-oxidant or provide a physical barrier, it effectively preserves cellular integrity and function under HEVL stress conditions. [19] However, ectoine exhibits a complex effect on DNA damage, protecting against some forms of radiation-induced damage while potentially enhancing structural changes in DNA under certain conditions. [20] More data would be needed. Scattering and absorption of blue light [5] The penetration depth of visible light is influenced by the reflection, scattering, and absorption mediated not only by the skin’s physical barrier but also by the VL chromophores in the skin and Fitzpatrick skin or photo-type (FST). The primary VL-scatter and absorption molecules in the skin include hemoglobin, melanin, bilirubin, carotene, lipids, and other structures, including cell nuclei and filamentous proteins like keratin and collagen. Melanin and keratins are the primary VL absorbers and scatterers in the epidermis, while hemoglobin is the dominant absorber, and collagen is the major VL scatter in the dermis. Melanin's absorption spectrum ranges from 200 to 900 nm, with the peak absorption varying based on melanin moiety. This means that individuals with darker skin types, which have higher melanin content, are more prone to hyperpigmentation from blue light or VIS due to the greater absorption and scattering of VIS in their skin on top of the previously mentioned higher levels of tyrosinase–DCT complexes leading to increased melanogenesis, leading to both transient and long-lasting pigmentation [13], dependent upon the total dose and exacerbation of melasma especially in individuals with FSTs III to VI. Blue light tanning Recent data demonstrate synergistic effects between VL and UV-A on erythema and pigmentation. VL-induced pigmentation is more potent and more sustained than UVA1-induced pigmentation in darker skin tones.Typically, three mechanisms are involved in the responsive reaction of melanocytes to VL, with increased melanin content: immediate pigment darkening (IPD), persistent pigment darkening (PPD), and delayed tanning (DT). [15] Read more. VL can also exacerbate post inflammatory hyperpigmentation (study with FST IV and V). [16] Blue light therapy While the detrimental effects of blue light and HEV light on the skin have been well-documented, these wavelengths have also shown promise in the treatment of certain skin conditions. In controlled clinical settings, blue light has been used to: Treat Acne: Blue light can reduce the growth of Propionibacterium acnes, the bacteria responsible for acne, and has an anti-inflammatory effect. Manage Psoriasis and Atopic Dermatitis: Blue light has been found to have an anti-inflammatory and antiproliferative effect, making it potentially beneficial for the treatment of these chronic inflammatory skin diseases. Reduce Itch: Some studies have suggested that blue light may help alleviate the severity of itching in certain skin conditions. Vitiligo: Blue light therapy via LEDs can stimulate repigmentation in patients with vitiligo with minimal adverse events, however larger studies are needed. [17] The optimal protocols for blue light therapy are still being developed, and the long-term safety of this treatment modality requires further investigation and should not be initiated without HCP recommendation and monitoring. Overall, the research suggests that prolonged or excessive exposure to high-energy blue light, can have negative long-term effects on skin structure, function, and appearance in all phototypes. As our understanding of the individual variations in skin's response to blue light exposure deepens, the development of personalised or tailored effective solutions become increasingly more tangible. Always consult a qualified healthcare professional or dermatologist to determine what the most suitable approach is for your particular skin condition and rejuvenation goals. Take care! Anne-Marie
References
Mitochondria are the "powerhouses" or "lungs" of our cells and bioenergetic semi-autonomous organelles with their own genomes and genetic systems. [1] They are responsible for generating the energy that fuels a wide range of cellular processes in the skin, including cell signaling, pigmentation, wound healing, barrier integrity [2], metabolism and quality control. [3] Mitochondria exist in each cell of the body and are generally inherited exclusively from the mother. Their primary role is cellular respiration; a process converting the energy in nutrients (like glucose) into a usable form of energy called ATP or Adenosine Triphosphate. Mitochondria are particularly abundant in the skin, reflecting the skin's high metabolic demand. When the functionality of mitochondria is impaired or declines, it impacts skin's vitality, health and beauty. Mitochondrial dysfunction is 1 of the 12 hallmarks of skin ageing.
The skin is particularly susceptible to mitochondrial stress due to its constant exposure to environmental insults, such as UV radiation, pollution, and other oxidative stressors. These factors can damage mitochondrial DNA, leading to increased production of reactive oxygen species (ROS) and disrupting the delicate balance of cellular processes. [4] In aged post-mitotic cells, heavily lipofuscin-loaded lysosomes perform poorly, resulting in the enhanced accumulation of defective mitochondria, which in turn produce more reactive oxygen species causing additional damage (the mitochondrial-lysosomal axis theory). [5] Optimal mitochondrial function is indispensable for sustaining the specialized functions of each cell type, like keratinocyte differentiation, fibroblast ECM production, melanocytes melanin production and distribution, immune cell surveillance, sebocytes and adipocytes. [6] Mitochondrial dysfunction is both directly and indirectly linked to chronological ageing and photo-ageing. [7] As mitochondrial function declines, the skin's ability to regenerate and repair itself is decreased. [2] This results in visible signs of aging, such as wrinkles, loss of elasticity, dryness, uneven pigmentation, melasma, age spots, lipomas, impaired wound healing. [2-4-5-8-9] Mitochondrial dysfunction also has been implicated in skin conditions like acne, eczema, lupus, psoriasis, vitiligo, atopic dermatitis and even skin cancer. [10] Ageing is associated with changes in mitochondrial morphology, including [6] ▌Hyperfusion or increased fragmentation ▌Loss of mitochondrial connectivity [11-7] ▌Decline in the efficiency of oxidative phosphorylation, leading to reduced ATP production ▌Decline mitochondrial membrane potential (ΔΨM) ▌Compromised cellular energy metabolism ▌Reduced mitochondrial turnover (downregulated biogenesis) ▌Impaired mitochondrial quality control such as mitophagy (removal of damaged mitochondria through autophagy) [6] These alterations are related to the increased production of ROS exhibited by mitochondria during ageing, the accumulation of which causes oxidative damage to mitochondrial and cell components contributing to cellular senescence. [12] Good mitochondrial function or metabolism: [7] ▌Redox homeostasis: (the way of reducing oxidative stress) - mitochondrial respiration and ROS production are essential for keratinocyte differentiation ▌ATP production: Adenosine Triphosphate provides energy to drive and support many processes in living cells (and GTP) ▌Respiration: mitochondrial respiration is the most important generator of cellular energy ▌Biogenesis: allows cells to meet increased energy demands, to replace degraded mitochondria and is essential for the adaptation of cells to stress [6] ▌Calcium homeostasis ▌Cellular growth ▌Programmed cell death (apoptosis) reducing cell senescence [13] ▌Mitochondrial protein synthesis: mitochondria typically produce 13 proteins encoded by mitochondrial DNA (mtDNA) Dysfunctional Mitochondria: [7] ▌Oxidative stress ▌Decreased ATP levels ▌Dysfunctional OXPHOS: Oxidative phosphorylation, a metabolic pathway in which enzymes oxidize nutrients to release stored chemical energy in the form of ATP ▌Altered mitochondrial biogenesis ▌Calcium imbalance ▌Cell death Mitochondrial proteins Mitochondria contain >1,100 different proteins (MitoCoP) that often assemble into complexes and supercomplexes such as respiratory complexes and preprotein translocases. The chaperones Heat Shock Proteins HSP60-HSP10 are the most abundant mitochondrial proteins. [3] Small heat shock proteins form a chaperone system that operates in the mitochondrial intermembrane space. Depletion of small heat shock proteins leads to mitochondrial swelling and reduced respiration. [14] Mitochondrial hyperpigmentation Emerging research has shed light on the intricate relationship between mitochondrial dysfunction and the development of hyperpigmentation, a condition characterized by the overproduction and uneven distribution of melanin in the skin. One of the key mechanisms underlying this connection is the role of mitochondria in the regulation of melanogenesis, the process by which melanin is synthesized. Mitochondria are involved in the production of various cofactors and signaling molecules that are essential for the activity of tyrosinase, the rate-limiting enzyme in melanin synthesis. [15] When mitochondrial function is impaired, it can lead to an imbalance in the production and distribution of these cofactors and signaling molecules, ultimately resulting in the overproduction and uneven deposition of melanin in the skin. [15] This can manifest itself as age spots, melasma, and other forms of hyperpigmentation. The link between mitochondrial dysfunction and hyperpigmentation has been further supported by studies on genetic disorders that involve mitochondrial dysfunction, such as mitochondrial DNA depletion syndrome. In these conditions, patients often exhibit a range of pigmentary skin changes, including patchy hyper- and hypopigmentation, as well as reticular pigmentation. [16] Mitochondrial crosstalk and exosomes Mitochondria can crosstalk and move beyond cell boundaries. [17] Mitochondria-derived material might be transferred to neighboring cells in the form of cell-free mitochondria or included in extracellular vesicles [18-19]. This process supports cellular repair and contributes to vital mitochondrial functions. Besides restoring stressed cells and damaged tissues due to mitochondrial dysfunction, intercellular mitochondrial transfer also occurs under physiological and pathological conditions. [20] The transfer of active mitochondria from mesenchymal stem cells (MSCs) has been identified as a repair mechanism for rejuvenating damaged skin fibroblasts. [21] MITOCHONDRIAL SUPPORT Move According Martin Picard phD being physically active is a protective factor against almost everything health related. Exercise stimulates the production of mitochondria as more energy is required. Be hungry sometimes If there is too much supply of energy acquired via food leads to mass shrinking of mitochondria or fragmentation. Don´t over-eat, be calorie neutral and sometimes being calorie deficient is good for mitochondria. Maintain a healthy weight, preferably with a mediterranean diet containing phenolic and polyphenolic compounds (increase mitochondrial function and number) nitrate rich vegetables, soybeans and cacao beans. Mitohormesis In model organisms, lifespan can be improved by compromising mitochondrial function, which induces a hormetic response (“mitohormesis”), provided that this inhibition is partial and occurs early during development. Feel good Feeling good (positivity), especially at night, has a scientifically proven positive effect on mitochondrial health index, it is even a predictive factor. Q10 or Coenzyme Q10 (CoQ10) Q10 is part of the mitochondrial respiration chain and essential for cellular energy production. About 95% of our cellular energy is generated with support of Q10, which is produced by the human body itself. During skin ageing, both the cellular energy production and levels of Q10 are declined. Q10 is a powerful anti-oxidant [22], thus protecting cells from oxidative stress and damage and has proven to be able to "rescue" senescent cells by decreasing elevated senescent markers like p21 levels and β-Galactosidases positive cell numbers (in-vitro). Q10 is bio-active, increasing collagen type I and elastin production. [23] Q10 can be supplemented via nutrition, however also via topical application and is considered an evidence based active ingredient in skin care products. Ubiquinol (reduced form) shows higher bioavailability compared to ubiquinone (oxidized form). [23] Pyrroloquinoline quinone (PQQ) Q10 improves the energy in the mitochondria, however PQQ has shown to increase the number of mitochondria and a redox maestro. I´ve written a full post about this compound, which can be found as skincare ingredient and supplement. Read more about PQQ Glutathione Glutathione is formed in cell's cytoplasm from glutamic acid, cysteine and glycine. It is present in 2 forms: reduced (GSH) and oxidized (GSSG). Reduced GSH is an active anti-oxidant, while the presence of inactive GSSG is increased under oxidative stress. The ratio between GSH and GSSH is considered a measure of oxidative stress. Glutathione participates in redox reactions, acts as co-factor of many anti-oxidant enzymes and is the most important non-enzymatic anti-oxidant, essential for synthesis of proteins and DNA. Low Glutathione results in accelerated ageing and inflammatory skin diseases. Mitochondrial glutathione (mGSH) is the main line of defense for the maintenance of the appropriate mitochondrial redox environment to avoid or repair oxidative modifications leading to mitochondrial dysfunction and cell death. [24] Glutathione can be increased via supplementation via precursors cysteine or N-acetylcysteine (not recommended for pregnant women), a combination of Glycine and NAC (called GlyNAC) part of the popular "power of three" supplementation, or the reduced form of Glutathione itself, or increased via topical active ingredients like Licochalcone A. [25] I´ve written about GlyNAC in my post on autophagy. Nicotinamide NR nicotinamide ribosome which is the precursor of NMN nicotinamide mononucleotide which is the precursor of NAD+ nicotinamide adenine dinucleotide all could have a protective effect on mitochondria. Nicotinamide adenine dinucleotide is present in living organisms as ions NAD+ and NADP+ and in reduced forms NADH and NADPH. NADH is a cofactor of processes inside mitochondria: ▌ATP production ▌Activation of "youth proteins" sirtuins ▌Activation of PARP Poly (ADP-ribose) polymerase, a family of proteins involved in many cellular processes such as DNA repair, genomic stability and programmed cell death ▌Reduction of ROS (free radicals) NAD levels as lowered during ageing. [26] One of the fans of NMN supplementation is Harvard Professor David Sinclair, best known for his work on understanding why we age and how to slow its effects and also featured in my article about hormesis. There are about 14 studies done to date with NMN supplementation in humans, one of which was done by Professor Sinclair. NMN supplementation does raise NAD levels, however there aren't substantial proven health benefits, unless you are unhealthy. Resveratrol Although systemically Resveratrol promotes mitochondrial biogenesis. [27] Other data shows that UVA (14 J/cm(2)) along with resveratrol causes massive oxidative stress in mitochondria. As a consequence of oxidative stress, the mitochondrial membrane potential decreases which results in opening of the mitochondrial pores ultimately leading to apoptosis in human keratinocytes. [28] Magnesium Magnesium supplementation has been shown to improve mitochondrial function by increasing ATP production, decreasing mitochondrial ROS and calcium overload, and repolarizing mitochondrial membrane potential. There are many forms of Magnesium, however Citrate, Malate and Orotate are particularly good for energy. L-Carnitine Placebo-controlled trials have shown positive effects of L-Carnitine supplementation on both pre-frail subjects and elderly men. The effect is possibly mediated by counteracting age-related declining L-carnitine levels which may limit fatty acid oxidation by mitochondria. NEW Ergothioneine (EGT) Ergothioneine (EGT) is a sulfur-containing amino acid derivative known for its antioxidant properties, particularly in mitochondria. It is transported into cells and mitochondria via the OCTN1 transporter, where it helps reduce reactive oxygen species (ROS) and maintain cellular homeostasis [29]. EGT binds to and activates 3-mercaptopyruvate sulfurtransferase (MPST), enhancing mitochondrial respiration and exercise performance [30]. It also protects against oxidative stress and inflammation, potentially benefiting conditions like neurodegenerative diseases [31]. Melatonin Not much talked about when it comes to mitochondria, however should not be ignored as mitochondria can benefit significantly from melatonin supplementation. 1. Antioxidant protection: Melatonin acts as a powerful antioxidant within mitochondria, scavenging free radicals and reducing oxidative damage to mitochondrial DNA and proteins [32][34]. 2. Regulation of mitochondrial homeostasis: Melatonin helps maintain electron flow, efficiency of oxidative phosphorylation, ATP production, and overall bioenergetic function of mitochondria [32][34]. 3. Preservation of respiratory complex activities: Melatonin helps maintain the activities of mitochondrial respiratory complexes, which are crucial for energy production [32][34]. 4. Modulation of calcium influx: Melatonin regulates calcium influx into mitochondria, helping prevent calcium overload which can be damaging [32][34]. 5. Protection of mitochondrial permeability transition: Melatonin helps regulate the opening of the mitochondrial permeability transition pore, which is important for maintaining mitochondrial integrity [32][34]. 6. Enhancement of mitochondrial fusion: Melatonin promotes mitochondrial fusion, which is part of the quality control process for maintaining healthy mitochondria [33]. 7. Promotion of mitophagy: Melatonin enhances the removal of damaged mitochondria through mitophagy, helping maintain a healthy mitochondrial population [33]. 8. Reduction of nitric oxide generation: Melatonin decreases nitric oxide production within mitochondria, which can be damaging in excess [32][34]. 9. Selective uptake by mitochondria: Melatonin is selectively taken up by mitochondrial membranes, allowing it to exert its protective effects directly within these organelles [34]. 10. Support of mitochondrial biogenesis: Some studies suggest melatonin may promote the formation of new mitochondria [33]. The key antioxidants used by mitochondria are Glutathione (GSH), Glutathione peroxidase (GPx), Coenzyme Q10 (CoQ10), Superoxide dismutase (SOD), Melatonin, Vitamin C (ascorbate) and Vitamin E (α-tocopherol). Red light therapy By incorporating red light therapy into your skin care routine, you can help to counteract the damaging effects of mitochondrial dysfunction and support the skin's natural renewal processes. As we continue to explore the 12 hallmarks of ageing, I am confident that we will gain even more valuable insights and develop breakthrough innovations that will improve skin quality, health, beauty and vitality. Always consult a qualified healthcare professional or dermatologist to determine what the most suitable approach is for your particular skin condition and rejuvenation goals. Take care! Anne-Marie References
Many people associate a tan with health, beauty and an active lifestyle. Although a moderate dose of solar radiation is indispensable for our health, unfortunately, there is no such thing as a real "healthy tan" or "healthy sun-kissed glow" as it is always a visible sign of skin damage. Tanning is a response by the skin to exposure to ultraviolet (UV) radiation (and HEV or Blue Light), either from natural sunlight or artificial sources like tanning beds which leads to photo-ageing, pigmentary disorders (like age spots or hyperpigmentation) and immunosuppression, hence skin cancer. When skin is exposed to sunlight: UV rays and high energy visible light (HEV) or also called Blue Light (the most energetic region of HEV), it produces more melanin, a pigment that darkens the skin as a (partial) protective mechanism to prevent further damage. The amount of artificial blue light emitted during the conventional use of electronic devices is not enough to trigger harmful skin effects. (Click here to read more)
MELANIN Melanin is only produced by cells called melanocytes, mostly distributed in the epidermal-dermal junction. Melanocytes contain specialized organelles called melanosomes to store and produce melanin. Melanosomes are transferred from the melanocytes to the neighboring keratinocytes, which are the most abundant cells in the epidermis. One melanin-forming melanocyte surrounded by 36 keratinocytes and a Langerhans cell is called the melano-epidermal unit. [1.2] Melanocytes use the amino acid tyrosine to produce melanin and protect epidermal keratinocytes and dermal fibroblasts from the damaging effects of solar radiation.. [13] The are two melanin pigment classes:
Differences in skin pigmentation do not result from differences in the number of melanocytes in the skin, as one might assume, but from differences in the melanogenic activity (melano-competence), the type of melanin produced in melanosomes (the ratio between eumelanin and pheomelanin differs per Fitzpatrick phototype) and the size, number and packaging of melanosomes, with melanin content of melanosomes ranging from 17.9% to 72.3%. [7] The amount of melanin is never enough for adequate photoprotection, and a "base tan" does not prevent sunburn. Particularly darker phototypes are more sensitive for the damaging effects of Blue Light. Both eumelanin and pheomelanin production are promoted by UV radiation and Blue Light and therefore sunscreens offering a combination of both UV (A + B) protection and Blue Light defense are recommended for all phototypes. TANNING PROCESS The skin's tanning process occurs in four distinct phases: [3]
ROLE OF UVA, UVB AND BLUE LIGHT One of the most important acute effects of UVR is DNA damage. UVA and UVB show different properties regarding their biological effects on the skin. [7] Shorter wavelengths (nm) correspond to higher energy. Infrared does not induce oxidative stress. Read more UVA radiation (320-400 nm) penetrates deeper into the skin and can induce indirect DNA damage by the generation of reactive oxygen species (ROS), leading to premature skin aging. UVA, in contrast to UVB is not filtered by window glass, is able to penetrate deeper into the skin and reach the dermis. They are present constantly, with relatively equal intensity, during all daylight hours throughout the year. It has been estimated that 50% of exposure to UVA occurs in the shade. UVA rays are less intense than UVB, but there are 30 to 50 times more of them. To produce the same erythemal response, approximately 1000 times more UVA dose is needed compared with UVB. [7] The bulbs used in tanning beds emit mostly UVA. UVB radiation (280-320 nm) is less prevalent than UVA, primarily affects the outermost layers of the skin, causing direct DNA damage (more potent than UVA) and triggers inflammatory responses that lead to increased melanin production. UVB radiation fluctuates throughout the day, are at their strongest at noon. and are more cytotoxic and mutagenic than UVA. The action spectrum for UV-induced tanning and erythema are almost identical, but UVA is more efficient in inducing tanning whereas UVB is more efficient in inducing erythema (redness). Dark skin is twice as effective compared to light skin in inhibiting UVB radiation penetration. [7] UVB helps the skin to produce Vitamin D. Blue light (400-500 nm) visible light accounts for 50% of sunlight [11] and can contribute to immediate, delayed, continuous and long-lasting pigmentation by activating melanocyte-specific photoreceptors and increasing melanin synthesis, particularly in individuals with darker (melano-competent) skin types [9], cause DNA damage [10] and generate damaging reactive oxygen species in both the epidermis and the dermis. [12] The effects may last longer than those induced by UVA and UVB radiation. Blue Light can penetrate even deeper than UVA and reach the hypodermis. Blue light therapy is used to target acne causing bacteria and inflammation, however the risks might outweigh the benefits especially in darker phototypes and it might worsen acne marks. EPIDERMIS AND DERMIS Both dermal fibroblasts and epidermal keratinocytes play a crucial role in regulating skin pigmentation and tanning response. [13 15] In comparison to epidermal tanning, dermal tanning is less visible, however more immediate. Dermal fibroblasts secrete various paracrine factors that regulate melanocyte function, survival, and melanin production. Factors like hepatocyte growth factor (HGF), nerve growth factor (NGF), stem cell factor (SCF), and basic fibroblast growth factor (bFGF) stimulate melanogenesis and pigmentation [14 15] Fibroblast senescence and altered secretory profiles in conditions like melasma contribute to abnormal pigmentation by stimulating melanogenesis. [15] Epidermal keratinocytes produce factors like α-melanocyte stimulating hormone (α-MSH) and Wnt1 that activate melanogenic pathways in melanocytes, leading to increased melanin synthesis and transfer to keratinocytes. [15 16]. Keratinocyte-derived exosomes can enhance melanin production by melanocytes. [16] Differences in autophagic activity between various keratinocytes also influences pigmentation. [15] MicroRNAs MicroRNAs are small, non-coding RNA molecules that regulate gene expression by binding to messenger RNA (mRNA) and typically suppressing protein production, for example collagen. They are classified as epigenetic modulators. Several miRNAs have been identified as differentially expressed in aged skin compared to young skin, including: - miR-383, miR-145, miR-34a (upregulated in sun-exposed aged skin) - miR-6879, miR-3648, miR-663b (downregulated in sun-exposed aged skin) [17] Enjoy the sun, however protect your (and your children's) skin from a photo-damaging tan to remain skin health and beauty. Sunless self-tanning products containing dihydroxyacetone (DHA) or Erythrulose provide a safe alternative to achieve a "sun-kissed" glow. You can use after-sun skin care which helps to rehydrate, reduce damage of "sun-stressed" skin and support it's repair. Always consult a qualified healthcare professional or dermatologist to determine what the most suitable approach is for your particular skin condition and rejuvenation goals. Take care! Anne-Marie
References
3/20/2024 Comments Telomeres: tiny caps with big impact
Our DNA is as like precious book of life filled with information and instructions, with telomeres acting like the protective covers. Just as book covers get worn over time, our telomeres naturally shorten as we age. This shortening is like a biological clock, ticking away with each cell division.
Telomere shortening is considered one of the twelve key hallmarks of aging. Those hallmarks all play an important role in longevity, health-span, and skin quality, thus both health and beauty. Telomeres are the protective end-caps of chromosomes, similar to the plastic caps at the end of shoelaces. They maintain genomic stability and prevent chromosomal damage. Telomeres become slightly shorter each time a cell divides, and over time they become so short that the cell is no longer able to successfully divide. They shorten more rapidly in dermal fibroblasts compared to epidermal keratinocytes, hence there are significant differences amongst our cells. Telomeres in skin cells may be particularly susceptible to accelerated shortening because of both proliferation and DNA-damaging agents such as reactive oxygen species and sun exposure. [16]. When a cell is no longer able to divide due to telomere shortening, this can lead to
This consequently affects both health and beauty
FACTORS INFLUENCING TELOMERE SHORTENING Sleep quality Poor sleep quality significantly impacts telomere length:
INTERVENTIONS FOR TELOMERE PRESERVATION 1. Possible strategies to preserve telomere length
Telomerase is an enzyme that plays a crucial role in maintaining the length of telomeres and skin cell function. Telomerase is a ribonucleoprotein enzyme, meaning it contains both protein (TERT plus dyskerin) and RNA components (TER or TERC). Its primary function is to add repetitive DNA sequences (telomeres) to the ends of chromosomes, preventing them from shortening during cell division. Telomerase is active in embryonic stem cells, some adult stem cells, cancer cells, certain skin cells, specifically:
Poor sleep quality is associated with shorter telomere length. Studies have found significant associations between shortened telomere length and poor sleep quality and quantity, including obstructive sleep apnea [17]. Not feeling well rested in the morning was significantly associated with shorter telomere length in older adults [18]. Sleep loss and poor sleep quality may activate DNA damage responses and cellular senescence pathways [17]. Poor sleep can increase oxidative stress and inflammation, which may accelerate telomere shortening [17]. Disruption of circadian rhythms due to poor sleep may negatively impact telomere maintenance [17]. Improving sleep quality through lifestyle changes and sleep hygiene practices may help preserve telomere length. [19]
A study showed that diet, exercise, stress management, and social support could increase telomere length by approximately 10% over five years [20].
Adopt a plant-rich diet, such as the Mediterranean diet, which includes whole grains, nuts, seeds, green tea, legumes, fresh fruits (berries), vegetables (leafy greens), omega-3 fatty acids from sources like flaxseed and fish oil or fatty fish and foods rich in folate. This diet is rich in antioxidants and anti-inflammatory properties that help maintain telomere length [21]. 5. Fasting Fasting, especially intermittent fasting, has attracted interest for its potential impact on health, including telomere preservation. Multiple studies have shown that intermittent fasting (IF) and other fasting regimens can reduce markers of oxidative stress and inflammation. Research on animals has demonstrated that caloric restriction and intermittent fasting can boost telomerase activity and enhance telomere maintenance in specific tissues. A human study by Cheng et al. (2019) found a correlation between intermittent fasting and longer telomeres, by reducing PKA activity and IGF1 levels, which are crucial for regulating telomerase function. A study showed that 36 hours of fasting induced changes in DNA methylation and another one histone modifications, hence fasting has the potential to induce epigenetic changes. Important note: Be careful with a time-restricted eating schedule (often seen as a form of intermittent fasting, where you eat all meals within an 8 hour time-frame), especially women in menopause or people with a pre-existing heart condition. The American Heart Association presented data indicating that people with a pre-existing heart condition have a 91% higher risk of of death of a heart disease when following the time-restricted eating schedule with an 8 hour window, compared to those who eat within a 12-16 hours window. However, several experts have criticised the data, which aren´t published in a peer reviewed journal. When considering fasting, or a time-restricted eating schedule, especially for a longer period, talk to a qualified HCP first. 6. Exercise
EMERGING TECHNOLOGIES IN TELOMERE-TARGETING SKINCARE Small RNAs in skincare Small RNAs play a significant role in the effectiveness of telomere-targeting skincare by influencing skin regeneration and cellular processes. Recent research has highlighted their potential in enhancing wound healing and reducing scarring, which are critical aspects of maintaining healthy skin. Small RNAs, such as microRNAs, are involved in regulating gene expression related to skin aging and and show potential in telomere maintenance [29]. They can modulate the expression of genes that control cellular senescence, oxidative stress response, and inflammation, all of which are crucial for preserving telomere integrity and function [30].
RNAi technology in development RNAi-based skincare approaches could target genes involved in telomere maintenance or have effects on markers related to telomere biology:
RNA-based telomere extension is a method developed at Stanford University and uses modified RNA to extend telomeres in cultured human cells, allowing cells to divide more times than untreated cells [35]. IN OFFICE DERMATOLOGICAL TREATMENTS Aesthetic, regenerative treatments that support skin quality may indirectly support telomere preservation.
Telomere shortening questionable as stand-alone hallmark [36] Telomere length (TL) has long been considered one of the best biomarkers of aging. However, recent research indicates TL alone can only provide a rough estimate of aging rate and is not a strong predictor of age-related diseases and mortality. Other markers like immune parameters and epigenetic age may be better predictors of health status and disease risk. TL remains informative when used alongside other aging biomarkers like homeostatic dysregulation indices, frailty index, and epigenetic clocks. TL meets some criteria for an ideal aging biomarker (minimally invasive, repeatable, testable in animals and humans) but its predictive power for lifespan and disease is questionable. There is inconsistency in epidemiological studies on TL's association with aging processes and diseases. This has led to debate about TL's reliability as an aging biomarker. It's unclear if telomere shortening reflects a "mitotic clock" or is more a marker of cumulative stress exposure. TL is still widely used in aging research but there are ongoing questions about its usefulness as a standalone biomarker of biological age. As research in regenerative medicine advances, we're seeing promising developments in therapies targeting telomere biology for longevity, health and beauty. While telomere research is exciting, it's important to remember that it's just one part of a comprehensive approach to aging, and future treatments will likely combine multiple strategies to target preferably all 12 hallmarks for the best results. Always consult a qualified healthcare professional or dermatologist to determine what the most suitable approach is for you. . Take care! Anne-Marie
References
[1] Martin, H., Doumic, M., Teixeira, M.T. et al. Telomere shortening causes distinct cell division regimes during replicative senescence in Saccharomyces cerevisiae. Cell Biosci11, 180 (2021) [2] M. Borghesan, W.M.H. Hoogaars, M. Varela-Eirin, N. Talma, M. Demaria, A Senescence-Centric View of Aging: Implications for Longevity and Disease, Trends in Cell Biology, Volume 30, Issue 10, 2020, Pages 777-791, ISSN 0962-8924, [3] McHugh D, Gil J. Senescence and aging: Causes, consequences, and therapeutic avenues. J Cell Biol. 2018 Jan 2;217(1):65-77. [4] Oeseburg, H., de Boer, R.A., van Gilst, W.H. et al. Telomere biology in healthy aging and disease. Pflugers Arch - Eur J Physiol 459, 259–268 (2010) [5] Catarina M Henriques, Miguel Godinho Ferreira, Consequences of telomere shortening during lifespan, Current Opinion in Cell Biology, Volume 24, Issue 6, 2012 [6] Henriques CM, Ferreira MG. Consequences of telomere shortening during lifespan. Curr Opin Cell Biol. 2012 [7] Chaib, S., Tchkonia, T. & Kirkland, J.L. Cellular senescence and senolytics: the path to the clinic. Nat Med 28, 1556–1568 (2022) [8] Lei Zhang et al. Cellular senescence: a key therapeutic target in aging and diseases JCI The Journal of Clinical Investigation 2022 [9] Muraki K, Nyhan K, Han L, Murnane JP. Mechanisms of telomere loss and their consequences for chromosome instability. Front Oncol. 2012 Oct 4;2:135. [10] Marlies Schellnegger et al. Aging, 25 January 2024 Sec. Healthy Longevity Volume 5 - 2024 Unlocking longevity: the role of telomeres and it´s targeting interventions [11] Bär C, Blasco MA. Telomeres and telomerase as therapeutic targets to prevent and treat age-related diseases. F1000Res. 2016 Jan 20;5:F1000 Faculty Rev-89. [12] Kasiani C. Myers et al. Blood (2022) 140 (Supplement 1): 1895–1896. Gene therapies November 15 2022 Successful Ex Vivo Telomere Elongation with EXG-001 in a patients with Dyskeratosis Congenital Kasiani C. Myers et al. [13] Falckenhayn C, Winnefeld M, Lyko F, Grönniger E. et al. Identification of dihydromyricetin as a natural DNA methylation inhibitor with rejuvenating activity in human skin. Front Aging. 2024 Mar 4;4:1258184 [14] Minoretti P, Emanuele E. Clinically Actionable Topical Strategies for Addressing the Hallmarks of Skin Aging: A Primer for Aesthetic Medicine Practitioners. Cureus. 2024 Jan 19;16(1):e52548 [15] Guterres, A.N., Villanueva, J. Targeting telomerase for cancer therapy. Oncogene 39, 5811–5824 (2020). [16] Buckingham EM, Klingelhutz AJ. The role of telomeres in the ageing of human skin. Exp Dermatol. 2011 Apr;20(4):297-302. [17] Debbie Sabot, Rhianna Lovegrove, Peta Stapleton, The association between sleep quality and telomere length: A systematic literature review, Brain, Behavior, & Immunity - Health, Volume 28, 2023, 100577, ISSN 2666-3546 [18] Iloabuchi, Chibuzo et al. Association of sleep quality with telomere length, a marker of cellular aging: A retrospective cohort study of older adults in the United States Sleep Health: Journal of the National Sleep Foundation, Volume 6, Issue 4, 513 – 521 [19] Rossiello, F., Jurk, D., Passos, J.F. et al. Telomere dysfunction in ageing and age-related diseases. Nat Cell Biol 24, 135–147 (2022) [20] Elisabeth Fernandez Research September 16 2013 Lifestyle changes may lengthen telomeres, A measure of cell aging. Diet, Meditation, Exercise can improve key element of Immune cell aging, UCSF Scientist report [21] Martínez P, Blasco MA. Telomere-driven diseases and telomere-targeting therapies. J Cell Biol. 2017 Apr 3;216(4):875-887. [22] Guo, J., Huang, X., Dou, L. et al. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Sig Transduct Target Ther 7, 391 (2022). [23] Hachmo Y, Hadanny A, Abu Hamed R, Daniel-Kotovsky M, Catalogna M, Fishlev G, Lang E, Polak N, Doenyas K, Friedman M, Zemel Y, Bechor Y, Efrati S. Hyperbaric oxygen therapy increases telomere length and decreases immunosenescence in isolated blood cells: a prospective trial. Aging (Albany NY). 2020 Nov 18;12(22):22445-22456 [24] Gutlapalli SD, Kondapaneni V, Toulassi IA, Poudel S, Zeb M, Choudhari J, Cancarevic I. The Effects of Resveratrol on Telomeres and Post Myocardial Infarction Remodeling. Cureus. 2020 Nov 14;12(11):e11482. [25] Widgerow AD, Ziegler ME, Garruto JA, Bell M. Effects of a Topical Anti-aging Formulation on Skin Aging Biomarkers. J Clin Aesthet Dermatol. 2022 Aug;15(8):E53-E60. PMID: 36061477; PMCID: PMC9436220. [26] Alt, C.; Tsapekos, M.; Perez, D.; Klode, J.; Stoffels, I. An Open-Label Clinical Trial Analyzing the Efficacy of a Novel Telomere-Protecting Antiaging Face Cream. Cosmetics 2022, 9, 95. [27] Cosmetics & Toiletries Telomere protection: Act on the origin of youth, June 3th 2015 Sederma [28] Yu Y, Zhou L, Yang Y, Liu Y. Cycloastragenol: An exciting novel candidate for age-associated diseases. Exp Ther Med. 2018 Sep;16(3):2175-2182. [29] Gerasymchuk M, Cherkasova V, Kovalchuk O, Kovalchuk I. The Role of microRNAs in Organismal and Skin Aging. Int J Mol Sci. 2020 Jul 25;21(15):5281. [30] Jacczak B, Rubiś B, Totoń E. Potential of Naturally Derived Compounds in Telomerase and Telomere Modulation in Skin Senescence and Aging. International Journal of Molecular Sciences. 2021; 22(12):6381. [31] Roig-Genoves, J.V., García-Giménez, J.L. & Mena-Molla, S. A miRNA-based epigenetic molecular clock for biological skin-age prediction. Arch Dermatol Res 316, 326 (2024). [32] Eline Desmet, Stefanie Bracke, Katrien Forier, Lien Taevernier, Marc C.A. Stuart, Bart De Spiegeleer, Koen Raemdonck, Mireille Van Gele, Jo Lambert, An elastic liposomal formulation for RNAi-based topical treatment of skin disorders: Proof-of-concept in the treatment of psoriasis, International Journal of Pharmaceutics, Volume 500, Issues 1–2, 2016, Pages 268-274, ISSN 0378-5173 [33] Oger E, Mur L, Lebleu A, Bergeron L, Gondran C, Cucumel K. Plant Small RNAs: A New Technology for Skin Care. J Cosmet Sci. 2019 May/Jun;70(3):115-126. PMID: 31398100. [34] Vimisha Dharamdasani, Abhirup Mandal, Qin M. Qi, Isabella Suzuki, Maria Vitória Lopes Badra Bentley, Samir Mitragotri, Topical delivery of siRNA into skin using ionic liquids, Journal of Controlled Release, Volume 323, 2020, Pages 475-482, ISSN 0168-3659 [35] Krista Conger January 2015 Stanford Medicine News Center Telomere extension turns back aging clock in cultured human cells, study finds [36] Alexander Vaiserman, Dmytro Krasnienkov Telemore length as marker of biological age: state-of-the-art, open issues and future perspectives Front. [37] Martínez P, Blasco MA. Telomere-driven diseases and telomere-targeting therapies. J Cell Biol. 2017 Apr 3;216(4):875-887
In skin biology, senescence is a process by which a cell ages and permanently stops dividing but does not die. This is why they are also referred to as "zombie cells". Age-related accumulation of senescent cells is caused by of increased levels of senescence-inducing stressors and/or reduced elimination of senescent cells. Under normal physiological conditions, senescent cells play an important role maintaining cellular homeostasis and inhibiting proliferation of abnormal cells. However, over time, large numbers of zombie cells can build up in the skin and contribute to the overall reduction in skin's regenerative properties, impacting both its beauty and health.
There are 2 forms of cell senescence: Acute senescence: Senescent cells are produced in response to acute stressors to facilitate for example tissue repair, wound healing. They are cleared by our immune system. Chronic senescence: A not programmed process as response to prolonged stress or damage and these senescent cells are not cleared by our immune system, leading to the accumulation of zombie cells impacting our skin health and beauty. It has been suggested that inflammageing is mainly related to senescent cells and their associated SASP (Senescence Associated Secretory Phenotype) which increase in the body with age and contribute to inflammageing. Senescent cells cause inflammageing and inflammageing causes cell senescence. [1] Senescence can be triggered by a number of stress signals to the cell [1]:
Mechanisms of skin cell senescence:
The presence of senescent cells accelerates the ageing process due to their communication with nearby cells through various molecules: [18]
Fibroblast senescence could be the main driver of the skin ageing. [3] The increased number of senescent fibroblasts results in the production of SASPs rich in pro-inflammatory cytokines, including interleukin (IL)-1, IL-6, IL-8, IL-18, matrix metalloproteinases (MMPs), and a variety of other inflammatory chemokines [2] resulting in the breakdown of collagen, loss of elasticity and wrinkle formation. [3] Autophagy in dermal fibroblasts is essential for maintaining skin balance and managing the ageing process, particularly in response to external stressors like UV radiation and particulate matter (PM), by repairing cellular machineries. [4] Insufficient autophagy leads to an exaggerated skin inflammation triggered by inflammasome activation, resulting in accelerated ageing characteristics. When exposed to UVB (in vitro), skin cell types like fibroblasts and keratinocytes show DNA damage and increased senescence markers, such as increased SASPs. [3] Dermal fibroblasts also release insulin-like growth factor (IGF)-1, essential for epidermal cell proliferation and differentiation. [5] IGF-1 signalling in senescent fibroblasts is significantly decreased [6]. Inhibition of the IGF-1 pathway decreases collagen production in the dermis, causing epidermal thinning. Additionally, mitochondrial dysfunction and increased levels of superoxide anions prompt fibroblast ageing, thereby speeding up the skin ageing process. [5] Fibroblasts isolated from photo-aged skin produce a greater amount of pro-melanogenic growth factors. [14] Ageing-associated pigmentation has also been reported to be driven by (UVA-induced) fibroblast senescence. [15-16] Keratinocyte senescence The epidermis shows less impact of senescent keratinocytes due to their quicker turnover in comparison to fibroblasts. Senescent keratinocytes experience reduced ECM production and cell adhesions [8], along with elevated MMP expression in UV-induced senescence [9], and increased SASP levels, including pro-inflammatory cytokines. [10] Airborn particulate matter (PM2.5) can penetrate a disrupted skin barrier. PM2.5-induced ROS leads to epigenetic modification: reduced DNA methyltransferase, elevated DNA demethylase expression, p16INK4a promotor hypomethylation and therewith accelerated keratinocyte senescence. [11] Keratinocytes are the main type of cells that signal the need for melanogenesis. [12] UVR-induced DNA damage in keratinocytes activates melanogenesis. [13] Melanocyte senescence Senescent melanocytes express markers of inflammageing and dysfunctional telomeres. Senescent melanocyte SASPs induce telomere dysfunction and limit the proliferation of the surrounding cells, hence, senescent melanocytes affect and impair basal keratinocyte proliferation and contribute to epidermal atrophy. [17] STRATEGIES TO COMBAT CELL SENESCENCE PREVENTION Sunscreen: Protection against UV radiation combined with blue light defense (Licochalcone A: powerful anti-oxidant, Nrf2-Activator & increasing Glutathione + Colour pigments) and prevention + repair DNA damage (Glycyrrhetinic Acid) INTERVENTION Senotherapeutics can be classified into three development strategies: [25]
Skin care ingredients: [18]
Of course a healthy life-style and diet (consider also intermittent fasting) will support both your body & skin longevity and beauty Prevention and intervention of skin cell senescence offers a promising approach to improve skin health and beauty. Always consult a qualified healthcare professional or dermatologist to determine the most suitable approach for your particular skin condition and rejuvenation goals. Take care! Anne-Marie References
Many of the skin regenerating or rejuvenating treatments, like energy based devices in the doctors-office are based on the principle to cause controlled damage and therewith provocation of a skin rejuvenating repair response. One of the fascinating mechanisms behind laser "damage" is the heat shock response leading to increased production of regenerating heat shock proteins (HSPs). Heat shock proteins respond to heat stress, are crucial cellular defence mechanisms against stress (environmental and physiological), act as chaperones, aiding in protein folding, prevention of protein damage, cellular protection and repair, with other words HSPs play a crucial role in proteostasis. [1]
HEAT SHOCK PROTEINS AND OX-INFLAMMAGEING UV radiation and blue light cause oxidative stress and inflammation, and can overwhelm skin's own capacity to counteract the increased formation of reactive oxygen species (ROS) and inflammatory mediators. Chronic oxidative stress state and chronic low grade of inflammation are hallmarks of skin ageing and their combination can be called ox-inflammageing. Oxidative stress and inflammation alter cellular signal transduction pathways and thereby the expression of the ECM genes as well as the structure of the ECM proteins like collagen, fibronectin and elastin. Their reduced expression and increased degradation manifests eventually at the skin surface as wrinkles, loss of firmness, and elasticity. Heat shock proteins are chaperone proteins that facilitate the formation of the ECM and prevention of molecular oxidative damage or degradation and are classified based on their molecular weights.
HEAT SHOCK PROTEINS AND PROTEOME Proteostasis, or protein homeostasis, refers to the balance between protein synthesis (like collagen, fibronectin and elastin), folding, and degradation. As we age, this balance is disrupted, leading to the accumulation of misfolded and aggregated proteins [10]. Loss of proteostasis is another hallmark of aging and HSPs play a crucial role in maintaining proteostasis through several mechanisms: 1. Protein folding: HSPs assist in the proper folding of newly synthesised proteins and refolding of misfolded proteins [10][11]. 2. Protein degradation: HSPs collaborate with the ubiquitin-proteasome system and autophagy to target misfolded proteins for degradation [10][12]. 3. Stress response: Under stress conditions, HSPs are upregulated to protect cells from protein damage and maintain cellular functions [13][14]. HSP-70 and HSP-90 are particularly important in protein folding and refolding, while small HSPs are involved in preventing protein aggregation [11][14]. Several studies have provided evidence supporting the potential of HSPs as an intervention to improve proteostasis: lifespan extension: [15], neuroprotection (HSP70), stress resistance and cellular survival [13][14], protein aggregation prevention (small HSPs) [11][14], autophagy regulation and particularly HSP70 is crucial for cellular protein quality control [16]. STIMULATION OF REJUVENATING HEAT SHOCK PROTEINS Heat shock protein synthesis can be initiated not only by heat but also by many chemical and physical stimuli, such as heavy metals, amino acid analogues, oxidative stress, viral infection and UV and ionizing irradiation. [17] Exercise and hormesis: Mild stress induced by exercise or other hormetic interventions has been shown to upregulate HSPs and improve proteostasis. Laser Laser treatments have been shown to induce a heat shock response in the skin from epithelial cells to deeper connective tissues, leading to the production of heat shock proteins. This response is characterized by the temporary changes in cellular metabolism, release of growth factors, and increased cell proliferation and thus contribute to tissue regeneration and rejuvenation. [17] CBD It has been proven that a large number of genes belonging to the heat shock protein super-family were up-regulated following cannabidiol (CBD) treatment. [18] UV radiation Ultraviolet radiation (UV)‐induced cell death and sunburn cell formation can be inhibited by previous heat shock exposure and UV itself can induce HSP expression. However, levels of HSP-27 have been found to be elevated in sun‐protected aged skin indicating a link between HSP-27 expression and age‐dependent epidermal alterations. [19] I would recommend daily protection from UV radiation and blue light (or high energy visible light). Ultrasound Ultrasound exposure at different frequencies, intensities, and exposure times can induce HSP-72 expression. Higher ultrasound frequencies, such as 10 MHz, have been found to significantly increase HSP-72 levels. Additionally, increasing the temperature during ultrasound exposure has shown to enhance HSP-72 expression. Interestingly, ultrasound at 1 MHz was unable to induce HSP-72 significantly, while 10 MHz ultrasound induced HSP-72 after 5 minutes of exposure. [16] Radiofrequency Radiofrequency has been shown to increase HSP-70 and decrease melanin synthesis and tyrosinase activity. [20] RF-US treatment significantly increased levels of HSP47 proteins. [21] Red & near infra red light Although I've not seen much peer reviewed published evidence, red light and near infra red light therapy may release the HSPs in the skin if tissue reaches >42 - 45 degrees (even for 8 - 10 seconds). Nicotinamide Nicotinamide and its derivatives have been found to stimulate the expression of heat shock proteins, including HSP-27, HSP-47, HSP-70, and HSP-90 in the skin. These proteins play as mentioned before an essential role in collagen production, skin protection, skin health and rejuvenation. [6] NAD as nutrient interestingly has proven to tweak the epigenome by modulating DNMT1 enzymatic DNA methylation and cell differentiation. [22] In topical applications an ingredient called Dihydromyricetin also called Epicelline® has been successful in inhibiting DNMT1 enzyme activity biochemical assays. [23] Stimulation of heat shock proteins offers a promising and novel invasive, non invasive and topical approach for skin regeneration, rejuvenation, reduction of ox-inflammageing and prevention of loss of proteostasis. Always consult a qualified healthcare professional or dermatologist to determine the most suitable approach for your particular skin condition and rejuvenation goals. Take care! Anne-Marie References
Like epigenetics and exosomes, neurocosmetics represent a revolutionary approach for skin care incorporating neuroscience principles, leveraging the skin-brain connection to improve skin health and beauty. The term itself is a fusion of the words neuroscience and cosmetics. It differs from psychodermatology which like neurocosmetics connects the interaction between mind and skin, but in a different way. Some describe it as how simple sensory stimulation can improve our overall wellbeing and call it "mood beauty", however this doesn't do it justice as neurocosmetics go beyond mood boosting skincare.
DEFINITION NEUROCOSMETICS Dermatologist Professor Laurent Misery back in 2002 described that neurocosmetics are products which are supposed to modulate the neuro-immuno-cutaneous-system (NICS) function at an epidermal level. Skin cells can produce neuromediators, which are mediators for transmission of information between skin, immune and the nervous system. All skin cells express specific receptors for neuromediators and by binding of the neuromediator to its receptor, modulation of cell properties and skin functions are induced like cell differentiation and proliferation (renewal), pigmentation, etc. Hence, keratinocytes, Langerhans cells, melanocytes, endothelial cells, fibroblasts and the other cells of the skin are modulated and controlled by the nerves and in return skin is able to modulate neuronal activity and growth. [1] SKIN-BRAIN CONNECTION In an article from the International Journal of Novel Research and Developments, the skin-brain connection was described as a psychobiological concept that highlights how emotions, stress, and neurotransmitters impact skin health. Indicating that the skin acts as a neuroimmunoendocrine organ, emphasizing its sensitivity to neural signals and stress responses. [4] CUTANEOUS NERVOUS SYSTEM The skin a sophisticated sensory organ that allows you to interact with your environment through touch and feel. It contains a complex network of nerves that send information about sensations like pressure, pain, itch and temperature from the skin through the spinal cord to the brain [9]. The dynamic interactions between the skin and the nervous system is influenced by factors like stress and inflammation, which can impact skin health and ageing. [7] Nerves in the skin: These nerves are like tiny messengers that tell your brain about what your skin is feeling: pressure, heat or pain. Types of nerve fibers: Some are thick and wrapped in a protective coating, which helps them send messages quickly. Others are thin and slow but are very good at sending messages about pain or temperature changes. [3] Sensory receptors: These receptors can tell if something is touching the skin lightly or if there's a lot of pressure. They can also sense if something is hot, cold, or causing pain. [3] Autonomic nervous system: Part of the cutaneous nervous system helps control things that happen in the skin automatically, like sweating to regulate body temperature. [8] Nerve cells: There are about 20 different types of neurons in our skin. [10] The contribution of epidermal keratinocytes to NICS [3]
CUTANEOUS NEURO-AGEING Neuro-ageing is defined as the changes in the nervous system which cause continuous neurodegeneration due to oxidative stress, neuroinflammation or impaired neuromodulation. As skin ages, Aβ-toxin (increased by oxidative stress) accumulates at the nerve endings innervating the tissue, causing disrupted cellular communication, particularly affecting fibroblasts’ ability to produce collagen and extracellular matrix. On top there is a decrease of nerve growth factor (NGF) production, important for the development and maintenance of nerve cells. Different factors can lead to a drop in NGF production, resulting in malfunctioning keratinocytes and reduced lipolytic activity of adipocytes, visibly impacting skin hydration and firmness. [6] Skin nerve fibres are significantly reduced in number following UV irradiation and in ageing skin [5] and therefore neuro-protectors or targetting neurodegeneration can reduce stress manifestations and promote healthy cellular communication for optimal skin function. [3] Although not much is known regarding skin specific or topical neuroprotectors (most research was focussed on the brain), probably potent anti-oxidants, by significantly reducing oxidative stress from UV and blue light and anti-inflammatory ingredients may inhibit skin neuro-ageing and can be neuroprotective especially when combined with sunscreen and strengthening of the skin barrier. NEUROCOSMETIC VARIETY OF ACTIONS
THE FUTURE OF NEUROCOSMETICS The neurocosmetics market is booming, with a projected value of USD 2.69 billion by 2030. [11] The future of neurocosmetics holds promise for innovative ingredients and concepts that harness new neuroscientific insights to revolutionize skin care and sunscreen formulations, to cater to both physical and emotional aspects of skin health and beauty. Take care! Anne-Marie References
One of the people I follow ever since I started to work on skin epigenetics back in 2017 and longevity is Harvard professor David Sinclair. He is best known for his (sometimes controversial) work on understanding why we age and how to slow its effects. He was talking about hormesis, a phenomenon where exposure to low doses of stressors induces beneficial effects. A hormetic (cellular defense) response can modulate ageing processes by activating genes related to maintenance and repair pathways through mild stress exposure in our body and skin, leading to enhanced longevity (thus anti-ageing) and health. [1 - 2]
Originating from the early 2000s, the concept of hormesis has evolved to evidenced based dermatological applications. [3] Various factors, including environmental stressors, lifestyle choices, and genetic predispositions, can influence the hormetic responses in skin cells. Understanding these influences is essential for optimizing skin health and beauty through hormetic pathways. Many terms are used for hormetic responses in the scientific literature, including the Arndt-Schulz Law, biphasic dose response, U-shaped dose response, preconditioning/adaptive response, overcompensation responses, rebound effect, repeat bout effect, steeling effect, among others. [4] Ageing is an emergent, epigenetic and a meta-phenomenon, not controlled by a single mechanism. Cellular damage has three primary sources: [3]
Effective homeodynamic space or buffering capacity (body's ability to maintain stability or balance in changing conditions) is characterized by:
Stress response is a reaction to physical, chemical, or biological factors (stressors) aimed at counteracting, adapting, and surviving, is a critical component of the homeodynamic space. There are seven main cellular stress response pathways:
Hormetins can be categorized into three types:
Hallmarks of aging benefiting from hormesis 1. Loss of proteostasis Hormetic stress can upregulate heat shock proteins (HSPs) and other molecular chaperones, improving protein folding and maintenance. [9] This directly supports proteostasis, which is crucial for cellular (skin) health and longevity. 2. Mitochondrial dysfunction Mild stress can stimulate mitochondrial biogenesis and improve mitochondrial function, potentially counteracting age-related mitochondrial decline.[9] 3. Cellular senescence Hormetic interventions may help clear senescent cells or prevent their accumulation, though this effect is less direct and requires further research. [8] 4. Deregulated nutrient sensing Hormetic stressors like caloric restriction or intermittent fasting can improve nutrient sensing pathways, particularly involving sirtuins and AMPK. [9] 5. Epigenetic alterations Some hormetic stressors can influence epigenetic markers, potentially reversing age-related epigenetic changes. [8] 6. Stem cell exhaustion Mild stress may stimulate stem cell activity and regeneration, though this effect varies depending on the type and intensity of the stressor. [9] 7. Altered intercellular communication Hormesis can modulate inflammatory responses and improve intercellular signaling, potentially addressing the "inflammaging" phenomenon. [8][9] Being aware of the phenomenon of hormesis can result in discovering the usefulness of new compounds, or synergistic effects of combining hormetic treatments which otherwise may have been rejected due to their effects of stress induction. What is bad for us in excess, can be beneficial in moderation, or (quote): "What doesn't kill you makes you stronger". [6]. The future of hormesis in dermatology holds great promise for innovative interventions, advanced hormetic technologies or personalized skin care regimens. Always consult a qualified healthcare professional or dermatologist to determine the most suitable approach for your particular (skin) condition and rejuvenation goals. Take care! Anne-Marie
Read more:
The impact of senescent zombie cells on skin ageing The role of heat shock proteins in skin rejuvenation Neurocosmetics, the skin-brain connection & neuro-ageing The role of the lymphatic system in ageing skin The power of light and photo-biomodulation Bio-stimulators Skin glycation Exosomes References
Hair is a powerful factor in how we're perceived by others and even how we see ourselves. It plays a significant role in the perception of youth and attractiveness. Studies have shown that hair style, color, and quality can significantly affect how old we look and how attractive we're considered [1]. Research suggests that hair is one of the most defining characteristics of our appearance, with the potential to make us look years younger or older [1]. From an evolutionary perspective, lustrous hair has long been associated with youth, health, and fertility [1]. Culturally, hair has been a symbol of beauty and status across societies for centuries [2].
HAIR GENETICS BEYOND MATERNAL INHERITANCE We have approximately 5 million hair follicles distributed across our bodies, with only about 100,000 located on the scalp [3][4]. Contrary to popular belief, hair characteristics are not solely inherited from one's mother. Human genetic makeup consists of 23 pairs of chromosomes, including the sex-determining X and Y chromosomes [5]. Females typically have two X chromosomes (with one usually inactivated through a process called X-chromosome inactivation), while males have one X and one Y chromosome [6]. Our hair's characteristics, including texture, color, and growth patterns, are determined by about 600 genes [7]. Interestingly, only 11% of these genes are located on the X chromosome [8]. The majority of genes influencing hair traits are found on autosomes (non-sex chromosomes), contributing to the inheritance patterns observed in families [9]. For instance, genes like EDAR and FGFR2 have been associated with hair thickness in Asian populations, while TCHH has been linked to hair texture in individuals of Northern European ancestry [10]. Research has identified several genes on the X chromosome that play a role in male pattern baldness, including the androgen receptor (AR) gene. Telomere length in hair follicle stem cells correlates with hair growth capacity and may be a biomarker for hair follicle aging. The complexity of hair genetics extends beyond sex chromosomes, involving multiple autosomal genes, environmental factors, hence epigenetics, and this is great news as changes in epigenetic patterns are partially reversible! Epigenetics Epigenetics refers to heritable changes in gene expression that occur without alterations in the DNA sequence itself [11]. Environmental factors, diet, lifestyle, chronic stress, sleep, circadian rhythms, physical activity, aging and even social interactions can influence gene expression through four main epigenetic mechanisms:
These epigenetic mechanisms can significantly impact hair biology
Example of change in epigenetic pattern Ever wondered why hair starts growing in odd places as we age? It is a good example of epigenetic changes. As we get older, changes in our epigenome can cause regions of our DNA that are normally silent (due to histone modifications) to become readable. In essence, we're becoming more like our ancient ancestors! This is why some people start growing more hair in places like ears and noses as they age. Epigenetic changes can thus silence or activate hair growth-related genes, potentially contributing to hair loss or promoting regeneration. Thus, the future of our hair health is literally (at least partially) in our hands today!. Lifestyle changes and hair regrowth Lifestyle modifications have demonstrated impacts on hair regrowth, particularly in early stages of hair loss and for prevention. 1. Nutrition: A balanced diet rich in proteins, vitamins (especially biotin, vitamins A, C, and D), and minerals (iron, zinc) has been associated with improved hair growth [20]. Supplementation with these nutrients has shown benefits in treating telogen effluvium and other hair loss conditions [21]. 2. Stress Management: Chronic stress can lead to telomere shortening and premature hair follicle aging. Stress reduction techniques like meditation and yoga have been linked to increased telomerase activity, potentially benefiting hair growth. 3. Exercise: Regular physical activity improves blood circulation to the scalp, potentially enhancing nutrient delivery to hair follicles. A study found that moderate exercise was associated with increased expression of hair growth-related genes. 4. Sleep: Adequate sleep is crucial for maintaining healthy hair growth cycles. Sleep deprivation has been linked to increased oxidative stress and inflammation, which can negatively impact hair follicles. Studies have shown promising results in targeting epigenetic mechanisms for hair loss treatment
In office therapies 1. Low-Level Laser Therapy (LLLT): LLLT works by decreasing nitric oxide enzyme activity, leading to a beneficial "micro-stress" in mitochondria. This hormetic effect increases energy production, allowing stem cells to stay young and rejuvenate. Clinical studies have demonstrated improved hair density and thickness with LLLT in androgenetic alopecia patients. 2. Platelet-Rich Plasma (PRP) and exosomes: These regenerative therapies deliver growth factors and signaling molecules to hair follicles, potentially reversing miniaturization and promoting the anagen phase. PRP has shown promising results in multiple clinical trials for androgenetic alopecia. 3. HydraFacial Keravive scalp treatment: A 3-step process involving cleansing, exfoliating, and nourishing the scalp to improve hair follicle health. 4. Hair Transplantation: Includes techniques like Follicular Unit Extraction (FUE) and strip harvesting to transplant hair from donor areas to balding areas. 5. Scalp micropigmentation: A cosmetic tattooing procedure that creates the appearance of a fuller head of hair. 6. Corticosteroid Injections: Used primarily for treating alopecia areata by injecting steroids directly into affected areas of the scalp. 7. Microneedling: Uses small needles to create micro-injuries in the scalp, potentially stimulating hair growth when combined with topical treatments. 8. Scalp Reduction: A surgical procedure that removes bald areas of the scalp and stretches hair-bearing skin. 9. Mesotherapy: Involves injecting vitamins, minerals, and other nutrients directly into the scalp to nourish hair follicles. BALD AINT BAD (for men)
Always consult a qualified healthcare professional or dermatologist to determine what the most suitable approach is for your particular skin or hair condition. Take care! Anne-Marie
The picture I used for this post is from my lovely daughter, who is blessed with fabulous hair.
References
3/3/2024 Comments The vitamin D dilemma
Balancing Health, Beauty, and vitamin D
Like many who promote skin health and beauty, I often find myself navigating the delicate balance between the benefits and risks of sun exposure. Moderate exposure to sunlight is essential for vitamin D production, triggers beneficial stress responses and DNA repair mechanisms in our bodies through hormesis, promoting overall health and well-being. However, excessive sun exposure can overwhelm these protective systems, leading to harmful effects such as skin damage and increased cancer risk. Vitamin D is a crucial prohormone that plays a vital role in numerous functions, including: 1. Bone health and calcium absorption [1] 2. Immune system modulation [1] 3. Regulation of up to 2,000 genes involved in various biological processes [1] – more details below 4. Potential cancer prevention [1] THE SUNLIGHT PARADOX: HEALTH BENEFITS VS. RISKS Benefits of sunlight exposure 1. Vitamin D production (80-90%) [1] 2. Regulation of circadian rhythms and improved sleep quality [1] 3. Mood enhancement and potential alleviation of depressive symptoms [1] 4. Lowering of blood pressure through nitric oxide production in the skin [1] Risks of excessive sun exposure 1. DNA damage, including the formation of cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4PPs) [2] 2. Oxidative stress and generation of reactive oxygen species (ROS) [2] 3. Premature skin aging and hyperpigmentation [2] 4. Increased risk of skin cancers, including melanoma [2] Health benefits of vitamin D 1. Bone health: Promotes calcium absorption and bone mineralization, preventing conditions like rickets and osteoporosis [3] 2. Muscle strength and function: Helps maintain muscle strength and reduce the risk of falls, especially in older adults [4] 3. Immune system support: Modulates immune responses and may reduce the risk of autoimmune diseases [5] 4. Heart health: Low vitamin D levels have been linked to increased risk of heart diseases, though the exact relationship is unclear [6] 5. Reduced risk of severe illnesses: May make severe flu and COVID-19 infections less likely [7] 6. Mood regulation: May play a role in regulating mood and decreasing the risk of depression [8] 7. Weight management: There is a relationship between (low) vitamin D levels and (over)weight, though the exact nature is not fully understood [9] 8. Reduced risk of multiple sclerosis (MS): Low levels of vitamin D are linked with an increased risk of MS [10] 9. Brain health: Supports brain cell activity and may have neuroprotective properties 10. Anti-inflammatory effects: Has anti-inflammatory properties that support overall health Skin health and beauty benefits of Vitamin D 1. Skin barrier function: Regulates the generation of keratinocytes, which are critical for maintaining the skin barrier [11] 2. Skin immunity: Indispensable for the activation of immune cells in the skin, supporting its protective function [12] 3. Antimicrobial effects: Has direct antimicrobial effects in the skin, helping to fight off pathogens [13] 4. Regulation of sebaceous glands: Important for growth regulation and optimum functioning of sebaceous glands [14] 5. Photoprotective effects: Topical application may offer some protection against UV-induced skin damage [15] 6. Wound healing: Promotes repair of damaged tissue and restoration of the skin's barrier mechanism [16] 7. Anti-aging effects: May have antiaging effects on the skin, though more research is needed in this area [17] 8. Skin cell differentiation and growth: Plays a role in the proliferation and differentiation of skin cells [18] 9. Melanin regulation: Protects the epidermal melanin unit and restores melanocyte integrity [19] 10. Potential role in skin conditions: May play a role in managing conditions like psoriasis, atopic dermatitis, and vitiligo [20] 11. Skin hydration: Topical application of vitamin D improves skin hydration and symptoms of dry skin [21] VITAMIN D AND PARP A study published in the International Journal of Molecular Medicine demonstrated that the active form of vitamin D inhibits poly(adenosine diphosphate-ribose) polymerase (PARP). PARP is an enzyme that plays a crucial role in DNA repair. PARP acts like a cellular "first responder" for DNA damage, initiating the repair process to keep our genetic material intact.
VITAMIN D SYNTHESIS IN THE SKIN
When UVB rays from sunlight hit the skin, they trigger the production of vitamin D [22]: 1. UVB radiation converts 7-dehydrocholesterol in the skin to previtamin D3 2. Previtamin D3 then isomerizes to vitamin D3 3. Vitamin D3 is transported to the liver and converted to 25-hydroxyvitamin D [25(OH)D] 4. Finally, 25(OH)D is converted to the active form, 1,25-dihydroxyvitamin D (calcitriol), in the kidneys FACTORS INFLUENCING VITAMIN D PRODUCTION 1. Latitude: Higher latitudes receive less UVB radiation, especially during winter months [23] 2. Time of day: UVB rays are strongest at solar noon [23] 3. Season: Vitamin D production is lower in winter due to reduced UVB radiation [23] 4. Skin pigmentation: Darker skin requires longer sun exposure to produce the same amount of vitamin D as lighter skin [24] 5. Age: Older adults produce less vitamin D from sun exposure [23] 6. Sunscreen use: High SPF sunscreens can significantly reduce vitamin D production [25] 7. Air pollution: Reducing UVB radiation reaching the earth's surface EPIGENETICS Vitamin D regulates up to 2000 genes, involving both direct genomic effects and epigenetic mechanisms. 1. Vitamin D receptor (VDR) binding The active form of vitamin D, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], binds to the vitamin D receptor (VDR). This liganded VDR then forms a heterodimer with the retinoid X receptor (RXR) [26][27]. 2. Direct gene regulation The VDR/RXR complex binds to specific DNA sequences called vitamin D response elements (VDREs). These VDREs can be located in promoter regions, introns, or even far from the transcription start sites of target genes [26][27][28]. 3. Epigenetic mechanisms
VDR interacts with numerous coregulatory proteins that can either activate or repress gene transcription [26][28]. 5. Genome-wide effects Genome-wide studies have shown that VDR can bind to hundreds of genomic loci, regulating gene activity at various locations, including many kilobases upstream or downstream of transcription start sites [26][28]. 6. Primary and secondary target genes Vitamin D regulates both primary target genes (directly controlled by VDR) and secondary target genes (controlled by transcriptional regulators encoded by primary targets) [26][30]. 7. Cell-specific regulation The effects of vitamin D on gene expression are highly cell-specific, depending on the epigenetic landscape of each cell type [26][31]. 8. Dose-dependent effects Higher doses of vitamin D supplementation have been shown to affect the expression of more genes in a dose-dependent manner [32]. RECOMMENDATIONS FOR SUN EXPOSURE Factors such as latitude, season, cloud cover, and individual skin type can all affect vitamin D synthesis [33][34]. Additionally, morning and evening sun contains less UVB radiation, which is necessary for vitamin D production, so longer exposure times may be needed [34]. Health experts often recommend midday sun exposure for optimal vitamin D production, while dermatologists typically advise against it due to increased UV intensity. Considerations 1. Midday sun (higher UVB) is more efficient for vitamin D production, requiring shorter exposure times [35] 2. Shorter exposure times may reduce overall UV damage risk [35] 3. Individual factors, such as skin type and location, should be considered when making recommendations [35] Impact of skin type Darker skin requires longer exposure times due to higher melanin content [1][36]
Type VI: 25.25 minutes [37]
Recommendation fair skin (Fitzpatrick Types I-III)
Recommendation darker skin (Fitzpatrick Types IV-VI) 1. Longer sun exposure times are needed, typically 15-30 minutes 3-5 times per week [40] 2. Consider exposing larger body surface areas when possible [40] 3. Sun exposure during midday hours may be more effective for vitamin D production [35] Variations based on location and season
Sunscreen and vitamin D production Sunscreen can decrease vitamin D3 formation in the skin. The effect varies based on coverage, thickness, and SPF. [36] Nevertheless, I would highly recommend the always use sunscreen on face, neck and décolletage as and expose skin surface areas to sunlight in the shortest amount possible to minimise DNA damage and the risk of sunburn and skin cancer. [1][36] ALTERNATIVE STRATEGIES FOR VITAMIN D SUFFICIENCY For many people, especially those living at higher latitudes, with darker skin, or those unable to obtain adequate sun exposure, or at high risk for skin damage, vitamin D supplementation may be necessary to maintain optimal levels, particularly during winter months [33][42]. However, excessive vitamin D3 levels can have negative health effects. 1. Dietary sources: Fatty fish, egg yolks, and fortified foods 2. Vitamin D3 supplements: The recommended dose is 1000 units per 25 pounds bodyweight (>4000 IU or 100 micrograms only under medical supervision) and taken alongside vitamin K2 and magnesium for a synergistic effect. Best is to take it in the morning in line with circadian rhythms. Consult with a healthcare provider for appropriate dosage and monitor your levels. 3. UVB lamps: Under medical supervision, these can be used for controlled vitamin D production. For the average adult a range of 30-50 ng/mL (75-125 nmol/L) is seen as optimal, 50 ng/mL (125 nmol/L) may be too high and below 20 ng/mL (50 nmol/L) are generally considered deficient. Achieving optimal vitamin D levels while protecting skin health requires a personalised approach. I hope that the information provided will help you to navigate the delicate balance between sun exposure benefits, risks and the use of sunscreens. Always consult a healthcare professional, especially if you have a history of skin cancer or are at risk for vitamin D deficiency. Take care Anne-Marie References [1] Holick MF. Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. Am J Clin Nutr. 2004 [2] Cadet J, Douki T. Formation of UV-induced DNA damage contributing to skin cancer development. Photochem Photobiol Sci. 2018 [3] Holick MF. Vitamin D deficiency. N Engl J Med. 2007 [4] Bischoff-Ferrari HA et al. Prevention of nonvertebral fractures with oral vitamin D and dose dependency: a meta-analysis of randomized controlled trials. Archives of Internal Medicine. 2009 [5] Prietl B et al. Vitamin D and immune function. Nutrients. 2013 [6] Wang TJ et al. Vitamin D deficiency and risk of cardiovascular disease. Circulation. 2008 [7] Martineau AR et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ. 2017 [8] Anglin RE et al. Vitamin D deficiency and depression in adults: systematic review and meta-analysis. British Journal of Psychiatry. 2013 [9] Vimaleswaran KS et al. Causal relationship between obesity and vitamin D status: bi-directional Mendelian randomization analysis of multiple cohorts. PLoS Medicine. 2013 [10] Munger KL et al. Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA. 2006 [11] Bikle DD. Vitamin D metabolism and function in the skin. Molecular and Cellular Endocrinology. 2011 [12] Schauber J. et al. Injury enhances TLR2 function and antimicrobial peptide expression through a vitamin D–dependent mechanism. Journal of Clinical Investigation. 2007 [13] Liu PT et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 2006 [14] Krämer C et al. Characterization of the vitamin D endocrine system in human sebocytes in vitro. Journal of Steroid Biochemistry and Molecular Biology. 2009 [15] Dixon KM, Deo SS, Wong G, Slater M, Norman AW, Bishop JE, Posner GH, Ishizuka S, Halliday GM, Reeve VE, Mason RS. Skin cancer prevention: a possible role of 1,25dihydroxyvitamin D3 and its analogs. Journal of Steroid Biochemistry and Molecular Biology. 2005 [16] Oda Y, Uchida Y, Moradian S, Crumrine D, Elias PM, Bikle DD. Vitamin D receptor and coactivators SRC2 and 3 regulate epidermis-specific sphingolipid production and permeability barrier formation. Journal of Investigative Dermatology. 2009 [17] Rinnerthaler M, Bischof J, Streubel MK, Trost A, Richter K. Oxidative stress in aging human skin. Biomolecules. 2015 [18] Bikle DD. Vitamin D regulated keratinocyte differentiation. Journal of Cellular Biochemistry. 2004 [19] Ranson M, Posen S, Mason RS. Human melanocytes as a target tissue for hormones: in vitro studies with 1α-25, dihydroxyvitamin D3, α-melanocyte stimulating hormone, and beta-estradiol. Journal of Investigative Dermatology. 1988 [20] Mostafa WZ, Hegazy RA. Vitamin D and the skin: Focus on a complex relationship: A review. Journal of Advanced Research. 2015 [21] Russell M. Assessing the relationship between vitamin D3 and stratum corneum hydration for the treatment of xerotic skin. Nutrients. 2012 [22] Wacker M, Holick MF. Vitamin D - effects on skeletal and extraskeletal health and the need for supplementation. Nutrients. 2013 [23] Webb AR, Engelsen O. Calculated ultraviolet exposure levels for a healthy vitamin D status. Photochem Photobiol. 2006 [24] Farrar MD, et al. Efficacy of a dose range of simulated sunlight exposures in raising vitamin D status in South Asian adults: implications for targeted guidance on sun exposure. Am J Clin Nutr. 2013 [25] Matsuoka LY, et al. Sunscreens suppress cutaneous vitamin D3 synthesis. J Clin Endocrinol Metab. 1987 [26] Fetahu IS, Höbaus J, Kállay E. Vitamin D and the epigenome. Front Physiol. 2014 [27] Carlberg C. Vitamin D and Its Target Genes. Nutrients. 2022 [28] Christakos S et al. Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects. Physiol Rev. 2016 [29] Voltan G et al. Vitamin D: An Overview of Gene Regulation, Ranging from Metabolism to Genomic Effects. Genes (Basel). 2023 [30] Veijo Nurminen et al. Front. Physiol., 05 March 2019 Sec. Integrative Physiology Primary Vitamin D Target Genes of Human Monocytes [31] Vassil Dimitrov et al. Vitamin D-regulated Gene Expression Profiles: Species-specificity and Cell-specific Effects on Metabolism and Immunity, Endocrinology, Volume 162, Issue 2, February 2021 [32] GrassrootsmHealth Nutrient Research Institute. Vitamin D Supplementation Amount Influences Change in Genetic Expression. [Internet]. 2018 [33] Wacker M, Holick MF. Sunlight and Vitamin D: A global perspective for health. Dermatoendocrinol. 2013 [34] Nagaria TD et al. The Sunlight-Vitamin D Connection: Implications for Patient Outcomes in the Surgical Intensive Care Unit. Cureus. 2023 [35] Rhodes LE, et al. Recommended summer sunlight exposure levels can produce sufficient (≥20 ng ml(-1)) but not the proposed optimal (≥32 ng ml(-1)) 25(OH)D levels at UK latitudes. J Invest Dermatol. 2010 [36] Ashley, R. (n.d.). Ask the Doctors - How much sunshine do I need for enough vitamin D? UCLA Health. [37] Yilmaz, B., & Karakas, M. (2024). UV index-based model for predicting synthesis of (pre-)vitamin D3 in human skin. Scientific Reports, 14(1), 3188. [38] Mead MN. Benefits of sunlight: a bright spot for human health. Environ Health Perspect. 2008 [39] American Academy of Dermatology. Sunscreen FAQs. [40] Farrar MD, et al. Efficacy of a dose range of simulated sunlight exposures in raising vitamin D status in South Asian adults: implications for targeted guidance on sun exposure. Am J Clin Nutr. 2013 [41] Miyauchi, M., & Nakajima, H. (2016). The solar exposure time required for vitamin D3 synthesis in the human body estimated by numerical simulation and observation in Japan. Journal of nutritional science and vitaminology, 62(5), 379-385. [42] Healthline How to Safely Get Vitamin D From Sunlight Ryan Raman, MS, RD — Updated on April 4, 2023 Our DNA faces thousands of damages daily, with sunlight being a major culprit. UVA, UVB, and High Energy Visible Light (HEVIS) harm our genetic material in different ways. These various types of DNA damage require diverse mechanisms for repair to maintain genomic integrity and prevent mutations that could lead to skin cancer and premature aging. This video explains (oversimplified) the key mechanisms of DNA damage by UVB, UVA and Hight Energy Visible Light (HEVIS) or Blue Light and repair.
UVA radiation (315-400 nm) causes damage primarily through indirect mechanisms: ▌ Photosensitization: Generates reactive oxygen species (ROS) via interaction with endogenous photosensitizers ▌ Oxidative stress: Leads to oxidative DNA damage, particularly 8-oxo-7,8-dihydroguanine (8-oxoG) lesions ▌ Indirect cyclobutane pyrimidine dimer (CPD) formation: Less efficient than UVB ▌ Direct DNA damage: Forms CPDs, especially at TT sequences ▌ DNA strand breaks: Both single-strand and double-strand breaks can occur ▌ Genomic instability: Long-term consequence of UVA exposure UVB radiation (280-315 nm) causes damage primarily through direct absorption by DNA: ▌ Direct CPD formation: Most abundant UVB-induced lesion ▌ 6-4 photoproduct (6-4PP) formation: Second most common UVB-induced lesion ▌ Dewar valence isomer generation: Derived from 6-4PPs upon further UVB exposure ▌ Oxidative DNA damage: Less prominent than with UVA ▌ DNA-protein crosslinks: Between DNA and nearby proteins ▌ Single-strand breaks: Can occur due to UVB exposure ▌ Pyrimidine hydrates: Minor UVB-induced lesions Blue light or HEVIS (400-700 nm) causes damage through mechanisms similar to UVA: ▌ Photosensitization: Generates ROS via interaction with endogenous photosensitizers ▌ Oxidative stress: Leads to oxidative DNA damage, particularly 8-oxoG lesions ▌ Mitochondrial DNA damage: Can lead to mitochondrial dysfunction ▌ Indirect CPD formation: Less efficient than UVA or UVB ▌ Single-strand DNA breaks: Caused by ROS-induced oxidative damage ▌ Lipid peroxidation: Indirectly affects DNA integrity ▌ Protein oxidation: Can damage DNA repair enzymes Take care Anne-Marie
Our DNA faces a staggering number of damaging events each day. Estimates suggest that each cell in our body endures approximately 70,000 DNA lesions [1] up to 100.000 per day [2][3]. While this number includes all types of DNA damage, sunlight remains a major culprit, especially for skin cells, which may experience even higher rates of DNA damage. Oxidative stress, another significant contributor, is estimated to cause about 10,000 DNA lesions per cell per day [1][3].
Frequency types of DNA damage: [3] ▌Oxidative damage: 10,000 to 11,500 incidents per cell per day in humans ▌Depurinations: 2,000 to 10,000 per cell per day in mammalian cells ▌Single-strand breaks: About 55,200 per cell per day in mammalian cells ▌Double-strand breaks: 10 to 50 per cell cycle in human cells Factors influencing DNA damage and rates: [4] ▌Environmental factors: UV-radiation, pollution and lifestyle choices (e.g., smoking) can increase oxidative stress ▌Frequency of exposure: repeated UV exposure can overwhelm repair mechanisms ▌Age: DNA repair efficiency declines with age ▌Skin phototype: individuals with fair skin are more susceptible to UV-induced damage ▌Cell type and location in the body ▌Individual factors: like genetics and epigenetics SUNLIGHT INDUCED DNA DAMAGE UVA, UVB, and High Energy Visible Light (HEVIS) harm our genetic material in different ways. UVA makes up the majority of UV radiation reaching the Earth's surface, and both UVA and blue light are used in artificial UV exposure settings [5][6]. 50% of the damaging oxidative stress in human skin is generated in the VIS spectrum and the other 50% by UV light [7]. UVB-Induced DNA damage UVB (280-315 nm) is generally considered the most harmful due to its higher energy content and efficient absorption by DNA [6], and is known to directly interact with DNA, primarily causing the formation of cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4PPs) [8]. These lesions can distort the DNA helix, potentially leading to mutations if left unrepaired. ▌Direct formation of cyclobutane pyrimidine dimers (CPDs): Most abundant UVB-induced lesion, formed between adjacent pyrimidines [6][5] ▌Formation of 6-4 photoproducts (6-4PPs): Second most common UVB-induced lesion [6][5] ▌Generation of Dewar valence isomers: Derived from 6-4PPs upon further UVB exposure [6] ▌Oxidative DNA damage: Through generation of reactive oxygen species (ROS), though less prominent than with UVA [9][10] ▌DNA-protein crosslinks: Formed between DNA and nearby proteins [6] ▌Single-strand breaks: Can occur as a result of UVB exposure [11] ▌Pyrimidine hydrates: Minor UVB-induced lesions [12] ▌Oxidative DNA-lesions, such as 8-oxodeoxyguanosine, when they are in proximity or on opposite DNA-strands, may generate double-strand breaks [5] UVB radiation is considered more genotoxic than UVA due to its direct absorption by DNA and efficient formation of mutagenic CPDs and 6-4PPs. However, both UVA and UVB contribute to solar UV-induced DNA damage and mutagenesis. UVA-Induced DNA damage UVA-induced (315-400 nm) DNA damage occurs through various mechanisms, primarily involving indirect effects but also some direct damage. ▌Photosensitization: Interaction with endogenous photosensitizers like riboflavin and porphyrins, leading to reactive oxygen species (ROS) generation [13] ▌Oxidative stress: ROS-induced oxidative DNA damage, with 8-oxo-7,8-dihydroguanine (8-oxoG) as a primary lesion [13][6][5] ▌Indirect cyclobutane pyrimidine dimer (CPD) formation: Through photosensitized triplet energy transfer, less efficient than UVB [13] ▌Direct DNA damage: Formation of CPDs, particularly at TT sequences [5][6] ▌Genomic instability [6] ▌Single-strand and double-strand DNA breaks [6][14] UVA-induced DNA double-strand breaks result from the repair of clustered oxidative DNA damages [6]. This means UVA doesn't directly cause DSBs, but rather creates oxidative damage that can lead to DSBs during the repair process. While UVA was originally not expected to induce DSBs due to its relatively low photonic energy, several studies have shown that UVA can induce DSBs in a replication-independent manner [6]. Oxidative DNA-lesions, such as 8-oxodeoxyguanosine, when they are in proximity or on opposite DNA-strands, may generate double-strand breaks [5]. Blue Light (HEViS)-induced DNA damage Blue light or high-energy visible light (HEVIS)-induced (400-700 nm) DNA damage occurs through mechanisms similar to UVA, primarily involving indirect effects mediated by reactive oxygen species (ROS). ▌Photosensitization: Interaction with endogenous photosensitizers like riboflavin and porphyrins, leading to ROS generation [15] ▌Oxidative stress: ROS-induced oxidative DNA damage, with 8-oxo-7,8-dihydroguanine (8-oxoG) as a primary lesion [5][16][17] ▌Mitochondrial DNA damage: Blue light can penetrate into cells and damage mitochondrial DNA, leading to mitochondrial dysfunction [6] ▌Indirect formation of cyclobutane pyrimidine dimers (CPDs): Through photosensitized triplet energy transfer, though less efficient than UVA or UVB [5][18] ▌Single-strand DNA breaks: Caused by ROS-induced oxidative damage [19] ▌Lipid peroxidation: ROS-induced damage to cellular membranes, indirectly affecting DNA integrity [20] ▌Protein oxidation: Damage to DNA repair enzymes and other proteins involved in maintaining genomic stability [21] ▌Chromosome aberrations (clastogenic/aneugenic effects) [5] ▌DNA double-strand breaks (DSBs), through indirect mechanisms Double-Strand Breaks (DSBs) While DSBs are less common than other types of UV-induced DNA damage, they are particularly dangerous because they affect both strands of the DNA helix and can lead to genomic instability if not properly repaired [14][22]. ▌UVA-induced DSBs: These often result from the repair of clustered oxidative DNA lesions. When repair enzymes attempt to fix closely spaced lesions on opposite strands simultaneously, it can lead to DSBs [6]. Some studies have found that UVA radiation can induce DSBs, particularly through oxidative stress mechanisms [6][23]. Other research suggests that UVA alone may not directly cause significant DSB formation or activate certain DNA damage response pathways associated with DSBs [24] ▌UVB-induced DSBs: UVB can cause DNA double-strand breaks. These can occur directly or as a result of replication fork collapse at sites of unrepaired lesions [22][25] ▌ROS-induced DSBs: UVA, UVB and Blue Light can generate reactive oxygen species (ROS), which can cause various types of DNA damage, including DSBs [5][6][14][23] The dose and wavelength of UV radiation can influence the types and extent of DNA damage, including DSB formation [25][26]. Cellular specificity of DNA damage Different skin cell types exhibit varying susceptibilities to DNA damage: 1. Keratinocytes: Most numerous and most exposed, they bear the brunt of UV-induced CPDs [6]. Blue light has been shown to cause DNA damage in human keratinocytes, potentially contributing to premature skin aging [5] 2. Melanocytes: Particularly vulnerable to oxidative damage due to melanin production [27] 3. Fibroblasts: While less directly exposed, they can accumulate damage over time, contributing to photoaging [27] Mitochondria, the powerhouses of the cell, have their own DNA and are particularly susceptible to DNA damage due to their proximity to reactive oxygen species (ROS) production. While oxidative stress in mitochondria can lead to damage, a certain level of ROS is actually necessary for proper cellular signaling and adaptation. Other types of DNA damage Beyond UV-induced damage, our DNA faces threats from various sources: 1. Hydrolytic Damage: Spontaneous hydrolysis can lead to depurination and depyrimidination [1] 2. Alkylation: Endogenous and exogenous alkylating agents can modify DNA bases [1] 3. Mismatch Errors: During DNA replication, incorrect nucleotides may be incorporated [1] MECHANISMS OF DNA REPAIR Cells have sophisticated DNA repair mechanisms, however, some damage may escape repair, potentially leading to mutations or cellular dysfunction over time. 1. Nucleotide Excision Repair (NER): ▌Primary mechanism for repairing UV-induced DNA damage, particularly cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4PPs)[25][28][29] ▌Involves recognition of DNA distortion, excision of the damaged segment, and synthesis of new DNA to fill the gap [30]. 2. Base Excision Repair (BER): ▌Repairs oxidative DNA damage caused by UVA and HEViS-induced reactive oxygen species (ROS) [30][31] ▌Involves removal of damaged bases (including oxidative lesions like 8-oxoG [29], creation of an apurinic/apyrimidinic (AP) site, and DNA synthesis to fill the gap [29][30] 3. Homologous Recombination Repair (HRR): ▌Repairs double-strand breaks that can result from UV exposure, particularly during DNA replication [32] ▌Uses an undamaged DNA template (usually a sister chromatid) to accurately repair the break [32] 4. Mismatch Repair (MMR): ▌Corrects errors in DNA replication that result in mismatched base pairs and small insertion/deletion loops [29][30][33] ▌Important for maintaining genomic stability and preventing mutations [30] 5. Double-Strand Break Repair: Includes homologous recombination and non-homologous end joining [29] 6. Non-Homologous End Joining (NHEJ): [32] ▌An alternative mechanism for repairing double-strand breaks ▌Directly ligates broken DNA ends without the need for a homologous template NER is particularly crucial for UV-induced damage, while the repair of oxidative lesions through BER can be challenging due to the persistent nature of oxidative stress. Additionally, research has highlighted the role of the AMPK pathway in promoting UVB-induced DNA repair by increasing the expression of XPC, a key protein in the NER pathway [28]. OTHER DNA REPAIR MECHANISMS In addition to the mechanisms primarily responsible for repairing sunlight-induced damage, our bodies have several other DNA repair pathways: 1. Direct Reversal Repair: ▌Includes mechanisms like O6-methylguanine-DNA methyltransferase (MGMT), which directly removes alkyl groups from guanine bases [25] 2. Translesion Synthesis (TLS): ▌Not a repair mechanism per se, but allows DNA replication to bypass damaged sites [30] ▌Can be error-prone but prevents replication fork collapse and more severe DNA damage [30] 3. Interstrand Crosslink Repair: ▌Repairs covalent links between DNA strands that can block replication and transcription [30] ▌Involves a complex interplay of multiple repair pathways, including NER and homologous recombination [30] 4. Single-Strand Break Repair: ▌Repairs breaks in one strand of the DNA double helix [30] ▌Often involves components of the BER pathway [30] These repair mechanisms often work in concert, and there can be significant overlap and interaction between different pathways. The choice of repair mechanism depends on factors such as the type of damage, the cell cycle stage, and the availability of repair proteins [28][30]. CONSEQUENCES OF UNREPAIRED DNA DAMAGE When DNA repair mechanisms fail or are overwhelmed, several outcomes can occur: 1. Skin Aging: Accumulation of damage in epidermal keratinocytes and dermal fibroblasts leads to reduced collagen production and elastin degradation [34] 2. Hyperpigmentation: DNA damage in melanocytes can trigger increased melanin production [34] 3. Skin Cancer: Mutations in key genes like p53 can lead to uncontrolled cell growth [34] CORRELATION INCREASE DAMAGE, INCREASED RISK OF PREMATURE AGING & CANCER While a large amount of DNA damage does increase the workload on repair mechanisms and can potentially lead to more errors, it's not a simple direct relationship. The body has multiple layers of protection, including cell death pathways for severely damaged cells. The balance between efficient repair, controlled cell death, and mutation accumulation is crucial in determining outcomes related to cancer and aging. Both cancer and aging are complex, multifactorial processes influenced by many factors beyond DNA damage and repair. 1. DNA damage accumulation and cancer/aging risk ▌DNA damage does accumulate over time in cells, with estimates of 10,000 to 100,000 DNA lesions per cell per day [3] ▌This accumulated damage, if not properly repaired, ca n lead to mutations that contribute to both cancer development and aging [35][36] 2. DNA repair and mutation risk ▌While DNA repair mechanisms are generally beneficial, they are not perfect and can occasionally introduce errors [30] ▌High levels of DNA damage can overwhelm repair systems, potentially leading to more errors during the repair process [37] 3. Connection to cancer and premature aging ▌Defects in DNA repair pathways are associated with increased cancer risk and premature aging syndromes [37][38] ▌Some inherited mutations in DNA repair genes (like POLE/POLD1) can lead to higher mutation rates and increased cancer risk, though not necessarily premature aging in all aspects [36] 4. Balance between repair and consequences ▌There's a delicate balance between DNA repair, cell death, and mutation accumulation [38] ▌Excessive DNA damage can lead to increased cell death and stem cell exhaustion, potentially promoting premature aging [38] ▌However, if mutations accumulate without triggering cell death, this can increase cancer risk [38] 5. Stem cell considerations ▌Stem cells have special mechanisms to maintain low mutation rates, but when mutations do occur, clonal expansion can contribute to both aging and cancer risk [38]
PREVENTION AND SUPPORT OF DNA REPAIR
1. Sun Protection: Broad-spectrum sunscreens (preferably including blue light protection), protective clothing, and avoiding peak UV hours remain the most effective strategies [39]. 2. Antioxidants: Both topical and oral antioxidants can help combat oxidative stress, though their efficacy in preventing DNA damage is still debated [40]. 3. Glycyrrhetinic Acid (GA): has protective effects against DNA damage and enhances DNA repair mechanisms both topical or as supplement. 4. DNA repair enzymes: Topical applications of enzymes like T4 endonuclease V have shown promise in enhancing repair [39]. 6. Ectoine exhibits a complex effect on DNA damage, protecting against some forms of radiation-induced damage while potentially enhancing structural changes in DNA under certain conditions [64]. It significantly reduces ionizing radiation-induced DNA strand breaks [64], but may increase transitions from supercoiled to open circular DNA conformations at non-physiological pH levels [63]. 7. Lifestyle factors: Adequate sleep, a balanced diet, and stress management can support overall cellular health and DNA repair processes. 8. Supplements: ▌Vitamin C: Dose: 500 mg [41]. .Vitamin C has been shown to potentially induce nucleotide excision repair (most important for sun damage) through anti-oxidant properties, however in high concentrations may be acting as pro-oxidant. ▌Folic Acid and Vitamin B12: Dose 15 mg folic acid and 1 mg vitamin B12 thrice weekly [42] Folic acid has show promise in markers for genomic instability, but does not significantly affect DNA strand breakage and excess may even increase DNA mutations and affect DNA repair gene expression. Vitamin B12 plays a role in DNA synthesis and methylation, which are important for genomic stability. ▌Selenium (as selenomethionine): Dose: 100 μg/day [43] promising, not conclusive. ▌Zinc: Dose: 22 mg/day Molecular Nutrition & Food Research. A small increase in dietary zinc can reduce oxidative stress and DNA damage as shown by reduced leukocyte DNA strand breaks, however more comprehensive human studies are necessary to be conclusive. ▌Coenzyme Q10: Dose: 100 mg/day Associated with reduced baseline DNA damage [44]. Ubiquinol-10 may enhance DNA resistance to oxidative damage and reducing strand breaks in vitro. Further research is needed to be conclusive. ▌Taurine: Taurine supplementation has been shown to reduce DNA damage in several studies [45][46][47]. In one study, taurine (20 mM) reduced formation of DNA base adducts like 5-OH-uracil, 8-OH adenine, and 8-OH guanine by 21-49% [45]. Taurine (2 g three times daily) decreased DNA damage associated with exercise [49][50]. Taurine suppresses DNA damage and improves survival of mice after oxidative DNA damage [52]. Most studies used doses between 1-6 g per day [51]. A proposed safe level of taurine consumption is 3 g/day [49]. Doses as high as 10 g/day for 6 months have been tested [51]. For exercise benefits, 2 g three times daily was effective [49][50]. Taurine acts as an antioxidant and can protect against oxidative DNA damage [45][46]. It may activate DNA repair pathways involving p53 [48][53]. Taurine deficiency is associated with increased DNA damage and cellular senescence [52]. ▌ Magnesium: Plays a crucial role in DNA repair and recommended dose varies by gender and age. Magnesium Malate and Citrate or Orotate are good for energy, while Glycinate and Threonate have an additional bonus as both support sleep quality, DNA repair processes are influenced by circadian rhythms and more active overnight. Sleep enhances the repair over double-strand breaks. Dark chocolate and deep green vegetables contain Magnesium. The studies cited come mostly from reputable peer-reviewed journals. Supplements have shown benefits in specific studies, their effects may vary depending on individual factors, correct dose and overall health status. Always consult with a healthcare professional before starting any new supplement regimen. PARP (Poly ADP-ribose polymerase) plays a crucial role in DNA repair, particularly in the base excision repair (BER) pathway. PARP acts like a cellular "first responder" for DNA damage, initiating the repair process to keep our genetic material intact. 1. DNA damage sensing: PARP1, the most abundant PARP enzyme, acts as a DNA damage sensor, quickly binding to single-strand breaks (SSBs) in DNA [54][55]. 2. Recruitment of repair factors: Once bound to damaged DNA, PARP1 catalyzes the synthesis of poly(ADP-ribose) (PAR) chains on various proteins, including itself. This PARylation helps recruit other DNA repair factors to the site of damage [54][56]. 3. Base Excision Repair (BER): PARP is a key component of the BER complex, which also includes DNA ligase III, DNA polymerase beta, and the XRCC1 protein [55]. 4. Chromatin relaxation: PARylation of histones by PARP leads to chromatin relaxation, allowing better access for repair enzymes to the damaged DNA [55][56]. This is moreover an epigenetic mechanism. 5. Regulation of other repair pathways: PARP is also involved in other DNA repair pathways, including nucleotide excision repair (NER) and double-strand break repair [55][56]. Boosting PARP activity for enhanced DNA repair: 1. Raising NAD+ levels: PARP activation will decrease NAD+ levels. Increasing NAD+ levels through precursors like nicotinamide riboside or nicotinamide mononucleotide might support PARP activity [57], especially in response to oxidative stress and DNA damage [58][59]. .Although NMN supplementation does raise NAD+ levels and it´s health benefits are hyped by longevity experts, some scientists are skeptical as they find the data in humans not very convincing to date, with minor benefits for unhealthy and older volunteers in 14 publications. Fact is that NAD+ levels decrease as we age as a result of declining levels or activity of the NAD+ recycling enzyme NAMPT in the biosynthetic salvage pathway and other NAD+ consuming enzymes like CD38 and as mentioned before PARPs. 1. Lifestyle factors: Regular exercise and calorie restriction have been shown to increase NAD+ levels, which could indirectly support PARP function [57]. Both aerobic and resistance exercise have been shown to increase NMAPT levels, reversing age related declines [66][61]. 2. Avoiding PARP inhibitors: Certain medications and supplements (interestingly these include polyphenols like resveratrol, favonoids and Vitamin D) can inhibit PARP activity [62]. Avoiding these could help maintain normal PARP function, although PARP inhibition can also have significant therapeutic benefits too. 3. Managing oxidative stress: Reducing oxidative stress through antioxidant-rich diets and lifestyle modifications may help preserve PARP function, as excessive oxidative damage can lead to PARP overactivation and subsequent depletion [56]. VITAMIN D The biggest benefit of sunlight for humans, next to enhancing our mood, is that sunlight is the primary source of vitamin D3 synthesis for most people. UVB radiation (290-315 nm) converts 7-dehydrocholesterol in the skin to previtamin D3, which then isomerizes to vitamin D3 [1]. Click here to read more about Vitamin D. A study published in the International Journal of Molecular Medicine demonstrated that the active form of vitamin D inhibits PARP. The most effective protection against UV-induced DNA damage is avoiding excessive sun exposure and using protective clothing. Sunscreens help, however their efficacy depends on the formula, applied amount, distribution evenness and reapplication. Some research is exploring the topical delivery of repair enzymes [39], while the efficacy of Glycyrrhetinic Acid to enhance DNA repair is well established. Always consult a qualified healthcare professional to determine what the most suitable approach is for your health and beauty goals. Take care Anne-Marie
References
[1] Chatterjee N, Walker GC. Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen. 2017;58(5):235-263. [2 ] Markiewicz E, Idowu OC. DNA damage in human skin and the capacities of natural compounds to modulate the bystander signalling. Open Biol. 2019 [3] Wikipedia, DNA repair Journal (peer reviewed [4] Gilchrest BA. Photoaging. J Invest Dermatol. 2013;133(E1):E2-6. [5] Cécile Chamayou-robert, Olivier Brack, Olivier Doucet, Carole Di Giorgio. Blue light induces DNA damage in normal human skin keratinocytes. Photodermatology, Photoimmunology & Photomedicine, 2022 [6] Greinert R, Volkmer B, Henning S, Breitbart EW, Greulich KO, Cardoso MC, Rapp A. UVA-induced DNA double-strand breaks result from the repair of clustered oxidative DNA damages. Nucleic Acids Res. 2012 [7] Exp Dermatol. Skin Pigmentation and its Control: From Ultraviolet Radiation to Stem Cells Joseph Michael Yardman-Frank et al. 2021 [8 ] Yarosh DB. DNA damage and repair in skin aging. Textbook of Aging Skin. 2016:1-7. [9] Rajeshwar P. Sinhaa Photochemical & Photobiological Sciences UV-induced DNA damage and repair: a review 2002 [10] André Passaglia Schuch, Natália Cestari Moreno, Natielen Jacques Schuch, Carlos Frederico Martins Menck, Camila Carrião Machado Garcia, Sunlight damage to cellular DNA: Focus on oxidatively generated lesions, Free Radical Biology and Medicine, 2017 [11] Jones Daniel L. , Baxter Bonnie K. Frontiers in Microbiology, DNA Repair and Photoprotection: Mechanisms of Overcoming Environmental Ultraviolet Radiation Exposure in Halophilic Archaea 2017 [12] Frauke Pescheck, Kai T. Lohbeck, Michael Y. Roleda, Wolfgang Bilger, UVB-induced DNA and photosystem II damage in two intertidal green macroalgae: Distinct survival strategies in UV-screening and non-screening Chlorophyta, Journal of Photochemistry and Photobiology B: Biology, Volume 132, 2014 [13] Cadet J, Douki T. Formation of UV-induced DNA damage contributing to skin cancer development. Photochem Photobiol Sci. 2018;17(12):1816-1841. [14] Rastogi RP, Richa, Kumar A, Tyagi MB, Sinha RP. Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J Nucleic Acids. 2010 Dec 16;2010:592980. doi: 10.4061/2010/592980. PMID: 21209706; PMCID: PMC3010660. [15] Cadet J, Douki T, Ravanat JL. Oxidatively generated damage to cellular DNA by UVB and UVA radiation. Photochem Photobiol. 2015;91(1):140-55. [16] Mouret S, Baudouin C, Charveron M, Favier A, Cadet J, Douki T. Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation. Proc Natl Acad Sci U S A. 2006;103(37):13765-70. [17] Ikehata H, Ono T. The mechanisms of UV mutagenesis. J Radiat Res. 2011;52(2):115-25. [18] Jin SG, Padron F, Pfeifer GP. UVA Radiation, DNA Damage, and Melanoma. ACS Omega. 2022;7(1):1169-1178. [19] Alaa El-Din Hamid S, Hiroshi M. Immunostaining of UVA-induced DNA damage in erythrocytes of medaka (Oryzias latipes). [Journal Name]. 2017. [20] Mouret S, Forestier A, Douki T. The specificity of UVA-induced DNA damage in human melanocytes. Photochem Photobiol Sci. 2012;11(1):155–162. [21] Rünger TM, Kappes UP. Mechanisms of mutation formation with long-wave ultraviolet light (UVA). Photodermatol Photoimmunol Photomed. 2008;24(1):2-10. [22] Rolfsmeier ML, Laughery MF, Haseltine CA. Repair of DNA double-strand breaks following UV damage in three Sulfolobus solfataricus strains. J Bacteriol. 2010 [23] Zhivagui, M., Hoda, A., Valenzuela, N. et al. DNA damage and somatic mutations in mammalian cells after irradiation with a nail polish dryer. Nat Commun 14, 276 (2023). [24] Jennifer L. Rizzo, Jessica Dunn, Adam Rees, Thomas M. Rünger, No Formation of DNA Double-Strand Breaks and No Activation of Recombination Repair with UVA, Journal of Investigative Dermatology, Volume 131, Issue 5, 2011 [25] Kciuk M, Marciniak B, Mojzych M, Kontek R. Focus on UV-Induced DNA Damage and Repair-Disease Relevance and Protective Strategies. Int J Mol Sci. 2020 Oct 1;21(19):7264. doi: 10.3390/ijms21197264. PMID: 33019598; PMCID: PMC7582305. [26] M O Bradley and V I Taylor PNAS DNA double-strand breaks induced in normal human cells during the repair of ultraviolet light damage June 15, 1981 [27] Debacq-Chainiaux F, et al. UV, stress and aging. Dermatoendocrinol. 2012;4(3):236-240. [28] Shah P, He YY. Molecular regulation of UV-induced DNA repair. Photochem Photobiol. 2015 [29] Marteijn JA, et al. Understanding nucleotide excision repair and its roles in cancer and ageing. Nat Rev Mol Cell Biol. 2014;15(7):465-481. [30] Chatterjee N, Walker GC. Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen. 2017 [31] Karran P, Brem R. Protein oxidation, UVA and human DNA repair. DNA Repair (Amst). 2016 [32] Clancy, S. (2008) DNA damage & repair: mechanisms for maintaining DNA integrity. Nature Education [33] Chen, J.; Potlapalli, R.; Quan, H.; Chen, L.; Xie, Y.; Pouriyeh, S.; Sakib, N.; Liu, L.; Xie, Y. Exploring DNA Damage and Repair Mechanisms: A Review with Computational Insights. BioTech 2024, 13, 3. [34] Rittié L, Fisher GJ. Natural and sun-induced aging of human skin. Cold Spring Harb Perspect Med. 2015;5(1):a015370. [35] Wu HC, Kehm R, Santella RM, Brenner DJ, Terry MB. DNA repair phenotype and cancer risk: a systematic review and meta-analysis of 55 case-control studies. Sci Rep. 2022 [36] Robinson, P.S., Coorens, T.H.H., Palles, C. et al. Increased somatic mutation burdens in normal human cells due to defective DNA polymerases. Nat Genet 53, 1434–1442 (2021) [37] Hakem R. DNA-damage repair; the good, the bad, and the ugly. EMBO J. 2008 [38] Stead ER, Bjedov I. Balancing DNA repair to prevent ageing and cancer. Exp Cell Res. 2021 [39] Jansen R, et al. Photoprotection: part II. Sunscreen: development, efficacy, and controversies. J Am Acad Dermatol. 2013;69(6):867.e1-14. [40] Godic A, et al. The role of antioxidants in skin cancer prevention and treatment. Oxid Med Cell Longev. 2014;2014:860479. [41] Elizabeth D. Kantor et al. Specialty Supplement Use and Biologic Measures of Oxidative Stress and DNA Damage Cancer Epidemiol Biomarkers Prev (2013) [42] Kaźmierczak-Barańska J, Boguszewska K, Karwowski BT. Nutrition Can Help DNA Repair in the Case of Aging. Nutrients. 2020 [43] Tobias Dansen et al. UMC Utrecht Assumption about cause DNA damage debunked 2024 [44] Dr Kara Fitzgerald 12 biological haalmarks of aging functional medicine longevity [45] Messina SA, Dawson R Jr. Attenuation of oxidative damage to DNA by taurine and taurine analogs. Adv Exp Med Biol. 2000 [46] Anand Thirupathi et al. Front. Physiol.,2020 Taurine Reverses Oxidative Damages and Restores the Muscle Function in Overuse of Exercised Muscle [47] Mir Kaisar Ahmad, Aijaz Ahmed Khan, Shaikh Nisar Ali, Riaz Mahmood PLOS ONE Chemoprotective Effect of Taurine on Potassium Bromate-Induced DNA Damage, DNA-Protein Cross-Linking and Oxidative Stress in Rat Intestine March 6, 2015 [48] Lai L, Wang Y, Peng S, Guo W, Li F, Xu S. P53 and taurine upregulated gene 1 promotes the repair of the DeoxyriboNucleic Acid damage induced by bupivacaine in murine primary sensory neurons. Bioengineered. 2022 [49] Chen Q, Li Z, Pinho RA, Gupta RC, Ugbolue UC, Thirupathi A, Gu Y. The Dose Response of Taurine on Aerobic and Strength Exercises: A Systematic Review. Front Physiol. 2021 [50] Qi Chen et al. Front. Physiol., 18 August 2021 Sec. Exercise Physiology Volume 12 - 2021 The Dose Response of Taurine on Aerobic and Strength Exercises: A Systematic Review [51] Drugs.com Taurine Last updated on May 13, 2024. [52] Parminder Singh et al. ,Taurine deficiency as a driver of aging.Science 2023 [53] Centeno, D.; Farsinejad, S.; Kochetkova, E.; Volpari, T.; Gladych-Macioszek, A.; Klupczynska-Gabryszak, A.; Polotaye, T.; Greenberg, M.; Kung, D.; Hyde, E.; et al. Modeling of Intracellular Taurine Levels Associated with Ovarian Cancer Reveals Activation of p53, ERK, mTOR and DNA-Damage-Sensing-Dependent Cell Protection. Nutrients 2024 [54] Li, X., Fang, T., Xu, S. et al. PARP inhibitors promote stromal fibroblast activation by enhancing CCL5 autocrine signaling in ovarian cancer. npj Precis. Onc. 5, 49 (2021) [55] Morales J, Li L, Fattah FJ, Dong Y, Bey EA, Patel M, Gao J, Boothman DA. Review of poly (ADP-ribose) polymerase (PARP) mechanisms of action and rationale for targeting in cancer and other diseases. Crit Rev Eukaryot Gene Expr. 2014 [56] Singh N, Pay SL, Bhandare SB, Arimpur U, Motea EA. Therapeutic Strategies and Biomarkers to Modulate PARP Activity for Targeted Cancer Therapy. Cancers (Basel). 2020 [57] Poljsak B, Kovač V, Milisav I. Healthy Lifestyle Recommendations: Do the Beneficial Effects Originate from NAD+ Amount at the Cellular Level? Oxid Med Cell Longev. 2020 [58] Jyotika Rajawat et al. Indian Journal of Biochemistry & Biophysics October 2022 NAD+ supplementation reverses the oxidative stress induced PARP1 signalling in D. discoideum [59] Lee, JH., Hussain, M., Kim, E.W. et al. Mitochondrial PARP1 regulates NAD+-dependent poly ADP-ribosylation of mitochondrial nucleoids. Exp Mol Med 54, 2135–2147 (2022). [60] de Guia RM, Agerholm M, Nielsen TS, Consitt LA, Søgaard D, Helge JW, Larsen S, Brandauer J, Houmard JA, Treebak JT. Aerobic and resistance exercise training reverses age-dependent decline in NAD+ salvage capacity in human skeletal muscle. Physiol Rep. 2019 [61] Chong MC, Silva A, James PF, Wu SSX, Howitt J. Exercise increases the release of NAMPT in extracellular vesicles and alters NAD+ activity in recipient cells. Aging Cell. 2022 [62] Geraets L, Moonen HJ, Brauers K, et al. Dietary flavones and flavonoles are inhibitors of poly(ADP-ribose)polymerase-1 in pulmonary epithelial cells. J Nutr. 2007;137(10):2190-2195. [63] Meyer, S., Schröter, MA., Hahn, M.B. et al. Ectoine can enhance structural changes in DNA in vitro . Sci Rep 7, 7170 (2017). [64] Schröter MA, Meyer S, Hahn MB, Solomun T, Sturm H, Kunte HJ. Ectoine protects DNA from damage by ionizing radiation. Sci Rep. 2017 Nov 10;7(1):15272. |
CategoriesAll Acne Age Clocks Ageing Aquatic Wrinkles Armpits Autophagy Biostimulators Blue Light & HEVIS Circadian Rhythms Cleansing Collagen CoQ10 Cosmetic Intolerance Syndrome Deodorant Dermaplaning Diabetes DNA Damage DNA Repair Dry Skin Epigenetics Evidence Based Skin Care Exfoliation Exosomes Eyes Face Or Feet? Facial Oils Fibroblast Fingertip Units Gendered Ageism Glycation Growth Factors Gua Sha Hair Hair Removal Hallmark Of Aging Healthy Skin Heat Shock Proteins Hormesis Humidity Hyaluron Hyaluronidase Hypo-allergenic Indulging Jade Roller Keratinocytes Licochalcone A Luxury Skin Care Lymphatic Vessel Ageing Malar Oedema Menopause Mitochondrial Dysfunction Mood Boosting Skin Care Neurocosmetics Ox Inflammageing Peptides PH Balance Skin Photo Biomodulation Polynucleotides Proteasome Psoriasis Regeneration Regenerative Treatments Review Safety Scarring Sensitive Skin Skin Care Regimen Skin Flooding Skin Hydration Skin Senescence Skip-Care Sleep Slugging Sunscreen Tanning Under Eye Bags UV Index Vitamin C Vitamin D Well Ageing Skin Care Wound Healing Wrinkles
Archives
December 2024
|
Anne-Marie van Geloven © 2024 All rights reserved
|