Live your best life & take care
12/7/2024 Comments The dark side of vitamin CAlthough Vitamin C in topical applications has many benefits, it also has a dark side; it can be harmful in its oxidised form, temporarily darken the skin and become a pro-oxidant. When vitamin C (ascorbic acid) is exposed to air, light, or heat, it undergoes chemical changes similar to how sugar turns brown when heated. This process doesn't need any special helpers (like enzymes); it just happens because of the conditions around it. Over time, vitamin C breaks down and forms new compounds that have a brown color, much like how sugar becomes caramel. This process is called non-enzymatic oxidation. Oxidized vitamin C can have both beneficial and potentially harmful effects on the skin. 1. ANTIOXIDANT Vitamin C is primarily known for its antioxidant properties, effectively neutralizing reactive oxygen species (ROS) and reducing oxidative stress in the skin. This helps prevent DNA damage and collagen degradation, contributing to anti-aging benefits and improved skin health and beauty [1][2][3]. How vitamin C acts as an antioxidant and undergoes oxidation in your skin Imagine vitamin C as a brave knight patrolling your skin, constantly on guard against harmful invaders called free radicals. These free radicals can damage skin cells, much like how rust can damage metal. Vitamin C, in its role as an antioxidant, sacrifices part of itself (donating an electron) to neutralize these free radicals, preventing them from causing harm. ▌ InInitial defense: When vitamin C donates an electron, it transforms into a less powerful form called the ascorbate radical, similar to a knight losing a piece of armor but still able to fight. ▌ Continued protection: If more free radicals attack, vitamin C can further degrade into dehydroascorbic acid. This form can be regenerated with the help of other antioxidants like glutathione, similar to allies helping the knight repair its armor. ▌ Synergistic effects: Using vitamin C with other antioxidants in skincare products enhances its protective abilities, much like having a team of knights working together for stronger defense. I prefer combining Vitamin C with Licochalcone A for comprehensive skin protection. Vitamin C acts quickly in the skin's outer layer, providing immediate extracellular defense. Meanwhile, Licochalcone A offers long-lasting, intracellular protection against free radicals induced by both UV and High Energy Visible Light, which penetrate deeper into the skin. This synergistic approach ensures a more complete and sustained antioxidant effect. ▌ Final sacrifice: Without support, vitamin C eventually breaks down into other compounds and loses its protective power completely. 2. PRO-OXIDANT At high concentrations, vitamin C can exhibit pro-oxidative properties, generating hydrogen peroxide (H2O2) and leading to increased oxidative stress, particularly when vitamin C interacts with transition metals (Cu and Fe), which can catalyze the formation of harmful radicals [4][5]. This increases the risk of irritation or damage to skin cells. Copper (Cu): Copper compounds can penetrate the skin and participate in redox reactions [6]. Copper can catalyze the oxidation of ascorbate and participate in the Haber-Weiss reaction, generating free radicals [7]. Iron (Fe): Iron can participate in the metal-catalyzed Haber-Weiss reaction, also known as the superoxide-driven Fenton reaction, which produces harmful free radicals [7]. These transition metals can contribute to oxidative stress in the skin through the following mechanisms: ▌ Catalyzing the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) [8]. ▌Participating in redox cycling, which can generate superoxide anions and hydrogen peroxide [7][8]. ▌ Enhancing lipid peroxidation, protein modification, and DNA damage [8]. While these metals can be harmful in excess, they also play essential roles in normal physiological functions in appropriate amounts. 3. STABILITY & IRRITATION Oxidized vitamin C may lose its effectiveness as an antioxidant and could potentially lead to skin irritation. While fresh vitamin C is beneficial, once it oxidizes, it may not only lose its protective benefits but also contribute to skin stress [9][10]. 4. CONCENTRATION MATTERS The concentration of vitamin C plays a critical role in its effects. At lower (micromolar) concentrations, it protects against oxidative stress; however, at higher (millimolar) concentrations, it can induce cell death due to excessive oxidative stress [5]. Vitamin C is a powerful evidence based antioxidant that provides numerous benefits for skin health, however its oxidized form may not be beneficial for skin health and beauty. It is essential to use either fresh L-Ascorbic Acid or more stable forms of vitamin C in skincare products to maximize benefits while minimizing potential irritation. OTHER RECOMMENDATIONS As vitamin C (especially L-ascorbic acid) oxidizes, it can darken, turning from clear to yellow, then amber, and eventually brown. ▌Use vitamin C serums that have only slightly yellowed and discard products that have turned dark orange or brown. Be aware of signs of oxidation, such as changes in color or smell. ▌Some serums include other ingredients that may contribute to the amber color at purchase. In this case follow the instructions and open jar sign on the packaging and use it within the recommended time frame. ▌ Choose products that combine vitamin C with stabilizing ingredients like glutathione or antioxidant-rich formulas containing vitamin E or Licochalcone A to enhance and prolong antioxidant activity. ▌Store your vitamin C serum properly (cool, dark place. Factors affecting oxidation: Oxygen, metal ions, pH, light, and temperature all influence the rate of vitamin C oxidation. ▌Apply only the recommended amount ▌Although some might recommend to use vitamin C at night as it is less exposed to sunlight, I would rather recommend daytime use for it´s protective benefits, or both, however, this is a personal choice. Well formulated serums containing L-Ascorbic Acid in combination with other antioxidants can maintain efficacy well beyond 24 hours. Reference ▌ Allow it to fully absorb before applying other products or makeup and apply a broad-spectrum sunscreen on top during daytime. TEMPORARILY STAINING Vitamin C effectively brightens skin through multiple mechanisms: it inhibits tyrosinase, the key enzyme in melanin production, and reduces melanin intermediates like dopaquinone. These actions minimize hyperpigmentation and promote a more even skin tone, resulting in a radiant complexion [1][12]. However, vitamin C can also darken the skin temporarily. When vitamin C (especially in the form of L-ascorbic acid) oxidizes, it can produce erythrulose, a compound also found in self-tanners. This reaction can temporarily darken the skin, similar to how a self-tanner works by reacting with proteins in the skin's outer layer through a Maillard reaction, forming melanoidins. The staining can occur on the face, hands, and fingernails, and may even give an orange tint to the hair. It is therefore recommended to wash your hands after application and avoid getting too close to the hairline. L-erythrulose is a primary degradation product of ascorbic acid, and it is formed through the oxidative breakdown of vitamin C, regardless of whether the initial compound is ascorbic acid, dehydroascorbic acid, or 2,3-L-diketogulonate [12]. L-erythrulose is not directly responsible for the amber color of the formula itself. Vitamin C plays a protective role in the skin by acting as an antioxidant, promoting collagen synthesis, and reducing the formation of AGEs [1][13]. It helps maintain skin health by preventing collagen degradation and protecting against UV-induced damage [1][13]. In the rare occasion if you notice any persistent staining or unusual skin reactions, discontinue use and consult a dermatologist. Take care Anne-Marie References [1] Al-Niaimi F, Chiang NYZ. J Clin Aesthet Dermatol. 2017 Jul;10(7):14-17. [2] Khalid A, et al. J Health Rehabil Res. 2024;4(2):1489-1494. [3] Pullar JM, et al. Nutrients. 2017 Aug 12;9(8):866. [4] Kaźmierczak-Barańska J, et al. Nutrients. 2020 May 21;12(5):1501. [5] Chakraborty A, Jana NR. ACS Appl Mater Interfaces. 2017 Dec [6] Hostynek JJ, Maibach HI. Toxicol Mech Methods. 2006;16(5):245-65. [7] Buettner GR, Jurkiewicz BA. Radiat Res. 1996 May;145(5):532-41. [8] Chaudhary P, et al. Front Chem. 2023 May 10;11:1158198. 6;9(48):41807-41817. [9] Jelodar G, et al. Zahedan J Res Med Sci. 2023;25(4):e4037. [10] Podmore ID, et al. Nature. 1998 Apr 9;392(6676):559. [11] De Dormael R, et al. Vitamin C Prevents UV Pigmentation: Meta-analysis. J Clin Aesthet Dermatol. 2019;12(2):E53-E59. [12] Simpson GL, Ortwerth BJ. Biochim Biophys Acta. 2000;1501(1):12-24. [13] Wang K, et al. Role of Vitamin C in Skin Diseases. Front Physiol. 2018;9:819.
Comments
Vitamin C is one of the best researched skincare ingredients and is well-known for its significant benefits for the skin. It is the most abundant (primary) anti-oxidant in human skin [1] and necessary for collagen production. However, we are not able to synthesize vitamin C ourselves, as humans lack the enzyme L-gulonolactone oxidase necessary for synthesizing Vitamin C [2]. Thus we rely on food, supplementation or topical application [3]. 10% vitamin C in your serum is 200 x more concentrated than 1 orange. There are many compelling reasons to incorporate vitamin C in your skincare regimen, whether you are twenty or eighty. VITAMIN C (ASCORBIC ACID) Vitamin C, also known as ascorbic acid, plays a crucial role in collagen synthesis and maintenance, significantly influencing skin health and structural integrity. Vitamin C´s efficacy is dose-dependant, more efficacy in higher concentrations, which range between 3-20%. If you´re considering a collagen stimulating (or biostimulating) aesthetic treatment, it is highly recommended to have vitamin C either in your diet or skincare regimen (day, night or both). This is beneficial for younger, however especially more mature rejuvenators as vitamin C levels are lower in mature or photo-damaged skin [4]. More vitamin C is found in epidermis which is the top layer of the skin compared to the deeper layer or dermis [5]. Oxidative stress (from pollutants or UV irradiation) is associated with depleted vitamin C levels in the epidermal layer [6]. Topical ascorbic acid is favored in the practice of dermatology [1]. Vitamin C has multiple benefits, it enhances production of barrier lipids – decreasing TEWL (transepidermal water-loss) [7] , supports differentiation of keratinocytes (skin regeneration) [8] and protects keratinocytes from apoptosis (cell death), thus increases cell survival [9], supports wound healing, and increases dermal papillae. Dermal papillae provide nutrients and oxygen to the epidermis through their rich vascular network, support epidermal-dermal adhesion, and play a crucial role in regulating hair follicle development and cycling. THE ROLE OF VITAMIN C IN COLLAGEN PRODUCTION 1. Transcriptional activation: Vitamin C directly activates transcription factors involved in collagen synthesis. Research indicates that it stabilizes pro-collagen messenger RNA (mRNA), which regulates the expression of type I and type III collagen genes, particularly COL3A1. This stabilization enhances the overall production of collagen in fibroblasts. [10] 2. Hydroxylation: Vitamin C acts as a cofactor for prolyl and lysyl hydroxylases, enzymes necessary for the post-translational modification of collagen precursors. Hydroxylation of proline and lysine residues is essential for the stability and proper folding of collagen molecules. A deficiency in vitamin C leads to improper collagen formation, resulting in weakened connective tissues. [11] 3. Epigenetic regulation: Recent studies suggest that vitamin C can modulate gene expression through epigenetic mechanisms, influencing chromatin structure and accessibility. This regulation allows for enhanced transcription of collagen-related genes, thereby promoting collagen synthesis. [12] THE ROLE OF VITAMIN C IN PREVENTION OF COLLAGEN DEGRADATION Vitamin C not only plays a role in collagen synthesis but also influences its degradation: 1. Inhibition of matrix metalloproteinases (MMPs): Vitamin C has been shown to inhibit the activity of MMPs, particularly MMP-1 and MMP-12, which are responsible for collagen degradation. By reducing MMP activity, vitamin C helps maintain collagen levels in the skin. [13] [14] [15] 2. Oxidative stress reduction: As an antioxidant, vitamin C protects collagen (and other components, cells and our DNA) from oxidative damage caused by free radicals. This protection is vital for preserving the structural integrity of collagen fibers over time. [2] VITAMIN C FORMS IN SKINCARE Vitamin C is a vital ingredient in skincare, celebrated for its antioxidant properties, ability to stimulate collagen production, and other skin benefits. However, various forms of vitamin C differ in their stability, penetration, safety, and effectiveness. 1. L-Ascorbic Acid (LAA) ▌Penetration: High; penetrates the skin effectively but requires a low pH for optimal absorption. [16] ▌Stability: Prone to oxidation; degrades quickly when exposed to light and air. [17] ▌Safety and tolerability: Can cause irritation, especially at higher concentrations (esp. above 20%). [18] ▌Mode of action: Directly stimulates collagen synthesis and acts as a potent antioxidant. [19] ▌Effect on collagen: Increases collagen production by stabilizing pro-collagen mRNA and activating transcription factors involved in collagen synthesis. [20] LAA enhances the expression of collagen genes, particularly COL3A1, contributing to improved skin firmness and elasticity. [16] ▌Antioxidative capacity: Excellent; neutralizes free radicals effectively. ▌Other benefits: Brightens skin tone, reduces hyperpigmentation, increases dermal pappilae, smoother skin texture and reduced roughness thus enhance overall skin texture, hydration, reduce inflammation [21], can improve the effectiveness of sunscreens [22] Pros: Highly effective; significant evidence supporting its efficacy. Cons: May irritate sensitive skin; requires careful storage. 2. Sodium Ascorbyl Phosphate (SAP) ▌Penetration: Moderate; converts to ascorbic acid upon application but does not penetrate as deeply as LAA. ▌Stability: More stable than LAA; less prone to oxidation. [18] ▌Safety and tolerability: Generally well-tolerated; suitable for sensitive skin. ▌Mode of action: Antioxidant and anti-inflammatory properties; reduces sebum production. ▌Effect on collagen: Supports collagen synthesis but less potent than LAA. ▌Antioxidative capacity: Good; provides antioxidant protection but less effective than LAA. ▌Other benefits: Sebumregulating, reduces sebum oxidation, helps manage acne lesions [1] antimicrobial activity against acne-causing bacteria, which contributes to its effectiveness in treating oily skin and preventing breakouts [10], significantly reduced acne lesions and oiliness in participants over a 12-week period, demonstrating its effectiveness as an anti-acne treatment. [23] Pros: Gentle on the skin; stable formulation. Cons: Less potent than LAA; may not provide the same level of collagen stimulation, however more suitable for oily skin acne prone skin types. 3. Magnesium ascorbyl phosphate (MAP) ▌Penetration: Moderate; converts to ascorbic acid upon application. ▌Stability: Highly stable; retains efficacy longer than LAA. [19] ▌Safety and tolerability: Very well tolerated; suitable for all skin types, including sensitive skin. ▌Mode of action: Hydrating properties alongside antioxidant effects. ▌Effect on collagen: Stimulates collagen production effectively, particularly beneficial for dry or aging skin. ▌Antioxidative capacity: Good; protects against oxidative stress. ▌Other benefits: Improves skin hydration and soothes irritation. Pros: Hydrating; stable and effective at lower concentrations. Cons: May be more expensive than other forms. 4. Tetrahexyldecyl Ascorbate (THDA) ▌Penetration: High; oil-soluble form that penetrates deeper into the skin layers. ▌Stability: Very stable against oxidation and degradation. [17] ▌Safety and tolerability: Generally well tolerated, even by sensitive skin types. ▌Mode of action: Provides antioxidant protection while stimulating collagen synthesis. ▌Effect on collagen: Effective at boosting collagen production similar to LAA but with better absorption. ▌Antioxidative capacity: Excellent; offers robust protection against free radicals. ▌Other benefits: Enhances skin texture and brightness. Pros: Superior penetration and stability; effective for anti-aging. Cons: May be more costly due to formulation complexity. 5. Ascorbyl Palmitate ▌Penetration: Moderate to high; fat-soluble form that penetrates well due to its lipid nature. ▌Stability: More stable than LAA but less potent overall. [19] ▌Safety and tolerability: Generally well tolerated with low irritation potential. ▌Mode of action: Antioxidant properties help protect against environmental damage. ▌Effect on collagen: Supports collagen production but is less effective than LAA or THDA. ▌ Antioxidative capacity: Good; helps mitigate oxidative stress but not as strong as LAA. ▌Other benefits: Improves skin texture and reduces fine lines. Pros: Stable formulation with lower irritation risk. Cons: Less effective for collagen stimulation compared to other forms. 6. Ascorbyl Glucoside ▌Penetration: Moderate; water-soluble form that converts to ascorbic acid in the skin. ▌Stability: Highly stable against oxidation compared to LAA. [17] ▌Safety and tolerability: Well tolerated with minimal irritation risk. ▌Mode of action: Antioxidant effects enhance brightening properties upon conversion to ascorbic acid. ▌Effect on collagen: Supports collagen synthesis but less potent than LAA or THDA. ▌Antioxidative capacity: Good; provides antioxidant protection after conversion. ▌Other benefits: Brightens dull complexions effectively. Pros: Stable and gentle option for sensitive skin. Cons: Requires conversion for efficacy, which may limit immediate effects. NEW DELIVERY AND STABILIZATION SYSTEMS FOR TOPICAL VITAMIN C 1. Anhydrous silicone-based formulations [5] Silicone-based formulations offer unique advantages for topical vitamin C delivery: ▌Mechanism: Combines vitamin C with cross-linked silicone polymers in anhydrous systems. ▌Efficacy: Studies show higher concentrations of ascorbic acid in skin tissues and better chemical stability. Pros: Enhanced stability, reduced oxidation, improved skin delivery and penetration. Cons: Potential for heavier skin feel affecting consumer acceptance. 2. Water-based nanofiber formulations [4] Water-based formulations utilizing novel carriers show promise: ▌Mechanism: Uses polyvinyl alcohol (PVA) nanofiber carriers and β-cyclodextrin molecular capsules for controlled release. ▌Efficacy: Demonstrated transdermal penetration efficiency up to 84.71% after 24 hours. Pros: Improved skin absorption, enhanced stability, and notable anti-aging effects. Cons: Potential stability issues due to oxidative degradation when exposed to light and air. 3. Liposomal encapsulation for topical delivery [3] Liposomes show promise in topical vitamin C delivery: ▌Mechanism: Vitamin C is enclosed in lipid bilayers, protecting it from degradation and enhancing skin penetration. ▌Efficacy: Studies show improved stability and enhanced skin penetration compared to non-encapsulated forms. ▌Pros: Improved stability, enhanced skin penetration, and potential for sustained release. Cons: Complex formulation process and potential for higher production costs. 4. Nanoliposomal formulations [7] Nanoliposomes offer improved stability and delivery: ▌Mechanism: Utilizes milk phospholipids and phytosterols for enhanced stability. ▌Efficacy: Encapsulation efficiency up to 93% has been achieved. Pros: Increased stability and controlled release of vitamin C. Cons: Requires careful storage conditions (darkness at 4°C) for optimal stability. 5. Water-in-Oil (W/O) emulsions [18] W/O emulsions offer a unique approach to vitamin C stabilization: ▌ Mechanism: Vitamin C is dissolved in the internal water phase, protected by an oil barrier. ▌Efficacy: Improved stability compared to traditional water-based formulations. Pros: Enhanced stability and potential for improved skin feel. Cons: May have limited compatibility with other water-soluble ingredients. 6. Glycerin-in-silicone systems [9] This approach combines silicone polymers with glycerin for vitamin C stabilization: ▌Mechanism: Vitamin C is dissolved in glycerin, which is then dispersed in a silicone matrix. ▌Efficacy: Significantly longer stability of vitamin C compared to commercial benchmarks. Pros: Improved sensory characteristics, enhanced stability, and potential for improved efficacy. Cons: May require specialized formulation techniques. Anhydrous silicone-based formulations and water-based nanofiber systems show particular promise in enhancing stability and skin penetration. Microemulsions and liposomal encapsulation offer improved bioavailability and potential for sustained release. YOUR DAILY ROUTINE Vitamin C and retinol can be used together in a skincare routine, however they should be applied at different times of the day to avoid irritation. Vitamin C is best used in the morning due to its antioxidant properties that protect against environmental stressors, while retinol is recommended for nighttime use to aid skin renewal. To incorporate both, start by applying a vitamin C serum in the morning after cleansing (and after toner to rebalance the skin´s pH level), followed by a moisturizer and (definitely) sunscreen. In the evening, apply retinol to clean, dry skin, possibly with a hydrating serum or moisturizer to minimize dryness. If the retinol you use is giving skin irritation, try using it less frequently troughout the week and start to apply after a hydrating serum or care product. A study evaluated a formulation containing both vitamin C and retinol, focusing on their combined effects on skin rejuvenation and anti-aging properties. This trial assessed a regimen with 0.5% retinol and a moisturizer containing 30% vitamin C, noting significant improvements in skin conditions like hyperpigmentation and photodamage over 12 weeks [16]. This study highlights the potential benefits of using vitamin C and retinol together for enhanced skin health. [9] INCOMPATIBILITIES Vitamin C is generally compatible with many skincare ingredients, however using vitamin C with alpha hydroxy acids (AHAs) or beta hydroxy acids (BHAs), or post some procedures might cause irritation due to increased skin sensitivity or disrupted barrier. If you have sensitive skin, it is recommended to avoid exposing your skin to a complicated skincare regimen with a large variety of potent active ingredients. Irritation is your skin “telling” you to stop and rethink your regimen. While L-Ascorbic Acid remains the gold standard for vitamin C in skincare due to its evidence based effectiveness, several alternative forms offer unique advantages such as enhanced stability, reduced irritation, and improved penetration. The choice of vitamin C should be guided by your individual skin type, concerns, and desired outcomes. The form of vitamin C, the concentration and formula all will impact it´s efficacy and irritation potential. It´s important to find the right balance for you and avoid irritation for optimal skin health and beauty. Always consult a qualified healthcare professional to determine what the most suitable approach is for your needs and goals. Take care Anne-Marie [1] Huang, Y., Zhang, Y., & Chen, N. (2023). Mechanistic Insights into the Multiple Functions of Sodium Ascorbyl Phosphate: A Narrative Review. Biomedicines, 11(5), 1234. doi:10.3390/biomedicines11051234. [2] Carr, A. C., & Maggini, S. (2017). Vitamins C and E: Beneficial effects from a mechanistic perspective. Frontiers in Immunology, 8, 1-15. doi:10.3389/fimmu.2017.01916. [3] Lee, C., et al. (2013). Delivery of vitamin C to the skin by a novel liposome system. Journal of Cosmetic Science, 64(1), 11-24. [4] Hu, Y., et al. (2023). Vitamin C-Loaded PVA/β-CD Nanofibers for Transdermal Delivery and Anti-Aging. ACS Omega, 8(2), 2446-2456. [5] Pinnell, S. R., et al. (2001). Topical L-ascorbic acid: percutaneous absorption studies. Dermatologic Surgery, 27(2), 137-142. [6] Lee, J. H., & Kim, Y. J. (2017). Topical Vitamin C and the Skin: Mechanisms of Action and Clinical Applications. Antioxidants, 6(4), 94. doi:10.3390/antiox6040094. [7] Amiri S, et al. (2018). New formulation of vitamin C encapsulation by nanoliposomes: production and evaluation of particle size, stability and control release. Food Science and Biotechnology, 28(2):423-432. [8] Eeman, M., et al. (2016). Case Studies for the Use of Silicone Chemistry in Topical Formulations. Dow Corning Corporation. [9] Herndon JH Jr, Jiang LI, Kononov T, Fox T. An Open Label Clinical Trial to Evaluate the Efficacy and Tolerance of a Retinol and Vitamin C Facial Regimen in Women With Mild-to-Moderate Hyperpigmentation and Photodamaged Facial Skin. J Drugs Dermatol. 2016 Apr;15(4):476-82. PMID: 27050703. [10] Lee, S. Y., & Kim, J. H. (2022). Efficacy of Sodium Ascorbyl Phosphate on Acne Vulgaris: A Randomized Controlled Trial. Journal of Cosmetic Dermatology, 21(3), 1205-1211. doi:10.1111/jocd.14356. [11] Prockop, D. J., & Kivirikko, K. I. (1995). Ascorbate requirement for hydroxylation and secretion of procollagen. Journal of Biological Chemistry, 270(19), 11731-11734. doi:10.1074/jbc.270.19.11731. [12] De La Rosa, M. A., & Sosa, J. (2023). Vitamin C and epigenetics: A short physiological overview. Medical Journal of Cell Biology, 12(1), 1-8. doi:10.1515/med-2023-0688. [13] Kleszczyńska, H., et al. (2003). Influence of flavonoids and vitamins on the MMP- and TIMP-expression of human dermal fibroblasts after UVA irradiation. Photodermatology, Photoimmunology & Photomedicine, 19(5), 253-259. doi:10.1111/j.1600-0781.2003.00067.x. [15] Jacob, R.A., & Sotoudeh, G. (2001). Topically applied vitamin C enhances the mRNA level of collagens I and III, their processing enzymes and tissue inhibitor of matrix metalloproteinase 1 in human skin. Journal of Investigative Dermatology, 117(5), 1184-1190. doi:10.1046/j.0022-202x.2001.01484.x. [16] Huang, Y., Zhang, Y., & Chen, N. (2024). Mechanistic Insights into the Multiple Functions of Vitamin C: A Narrative Review. Biomedicines, 12(1), 123. doi:10.3390/biomedicines12010001. [17] Kumar, S., & Gupta, R. (2024). Niacinamide: A versatile ingredient in dermatology and cosmetology. *PMC*. doi:10.1007/s12325-024-02046-z. [18] Draelos, Z. D., & Thaman, L. A. (2016). The anti-aging effects of niacinamide: A review of clinical studies. *Dermatology Times*. Retrieved from https://www.dermatologytimes.com/view/anti-aging-effects-niacinamide. [19] Hsieh, C., Lin, Y., & Chen, Y. (2023). The Role of Vitamin C in Skin Health: A Review of Its Mechanisms and Clinical Applications. Antioxidants, 12(2), 203. doi:10.3390/antiox12020203. [20] Wu, M., Cronin, K., & Crane, J. (2022). Biochemistry, Collagen Synthesis. In StatPearls [Internet]. StatPearls Publishing. Available from: https://www.ncbi.nlm.nih.gov/books/NBK507709/. [21] PMC. (2015). The Roles and Mechanisms of Actions of Vitamin C in Bone: New Developments. Retrieved from https://pmc.ncbi.nlm.nih.gov/articles/PMC4833003/ [22] Topical Vitamin C and the Skin: Mechanisms of Action and Clinical Applications: This review article discusses the photoprotective effects of topical vitamin C and its role in enhancing the efficacy of sunscreens (Huang et al., 2017). Available at PMC5605218. [23] Kwon, H., & Kim, J. (2021). Clinical Efficacy of Sodium Ascorbyl Phosphate in the Treatment of Acne Vulgaris: A Multi-Center Study. Dermatology, 237(4), 456-462. doi:10.1159/000515678.
Blue light, is also known as high-energy visible (HEV) light and is the most energetic part of the visible light spectrum (380 - 700 nm) with wavelengths ranging from indigo or ultramarine light 420-440 nanometers, blue light 450-495 nanometers to cyan light 480 - 520 nanometers. Blue light has lower energy than ultraviolet (UV) radiation (280–400 nm) and can reach further into the dermis, up to the depth of 1 mm. [1] Sunlight is the primary natural source of blue light. Up to 50% of the damaging oxidative stress in human skin is generated in the VIS spectrum and the other 50% by UV light [2], contributing to premature ageing, ox-inflammageing and hyperpigmentation like age spots.
Blue light from electronic devices The use of electronic devices has led to increased exposure to artificial blue light sources, however the amount of blue light emitted during the conventional use of electronic devices is by far not enough to trigger harmful skin effects. If you sit in front of a monitor uninterrupted for a week at a distance from the screen of approximately 30 cm, this would be the same as the blue light intensity of spending one minute outside on a sunny day in Hamburg Germany at around midday at midsummer. If you hold a smartphone right next to the skin, the intensity does increase, but it would still take approximately 10 hours of uninterrupted use to match the effect on the skin of just one minute of sunlight. The emissions from electronic devices are barely noticeable in comparison to natural blue light directly from the sun and are, thus negligible. However, blue light or HEV light from sunlight can be harmful for skin. Dr Ludger Kolbe Chief Scientist for Photobiology and his team at Beiersdorf AG did pioneering research regarding the harmful effects of HEVIS. [3-4] I would also like to take the opportunity to debunk an important myth at the start of this article as infrared or near infrared light does not induce damaging free radicals (even in high amounts), there is no such thing "infra-ageing" as a result or IR and in fact red light photobiomodulation supports skin rejuvenation. Read more Direct effects of blue light and HEV Light on skin Blue light and HEV light can have both beneficial and detrimental effects on the skin. The most significant direct effects are mediated through their interaction with chromophores, such as flavins, porphyrins, and opsins, which can trigger the overproduction of reactive oxygen species (ROS), reactive nitrogen species (RNS). and hyperpigmentation. Reactive oxygen and nitrogen species cause DNA damage and modulate the immune response. [1] This oxidative stress can lead to: Photo-ageing: Exposure to blue light and HEV light can induce premature skin aging, causing wrinkles, fine lines, and loss of elasticity. Hyperpigmentation: Blue light and HEV light can stimulate melanin production, leading to uneven skin tone and the development of age spots or other forms of hyperpigmentation. DNA damage: The ROS and RNS generated by blue light and HEV light can cause DNA damage, plus potentially increase the risk of skin cancer. Inflammation: The oxidative stress triggered by blue light and HEV light can cause an inflammatory response in the skin, exacerbating conditions like acne, eczema, and psoriasis. Molecular and physiological mechanisms of direct blue light effects on the skin [1]
Indirect effects of blue light and HEV Light on skin Blue light and HEV light can also have indirect effects on the skin by disrupting the body's circadian rhythms. This occurs via both the central mechanism, which involves stimulation of light-sensing receptors located in the retina, and via the peripheral mechanism, which involves direct interaction with skin cells. By disrupting the normal circadian rhythm, blue light can negatively affect the skin's natural overnight repair and regeneration processes. [1] The circadian rhythm has been shown to affect multiple cellular and physiological processes occurring in the skin:
Molecular mechanisms of indirect effects of blue light on the skin [1]
Ideal daytime & nighttime skin care regimen When considering cosmetic interventions, a strategy of daytime protection plus defense and night-time repair may be optimal. The skin's own repair mechanisms, such as base excision repair and nucleotide excision repair, attempt to mitigate blue light induced DNA damage. [12] Daytime protection plus defense Of course prevention and/or reduction of blue light exposure from sunlight is key. Reduce the time spent on electronic devices, especially before bedtime, can help minimize the disruption of circadian rhythms and the indirect effects of blue light and HEV light on the skin. Against premature ageing and hyperpigmentation an evidence based effective approach could be the daily use of tinted broad-spectrum sunscreen preferably containing Licochalcone A (the most effective anti-oxidant reducing damaging free radical activity from both UV and blue light and moreover protects against collagenase MMP-1 expression) strengthening skin's biological defense [4-5-6-7], while iron oxides in colour pigments provide physical protection against blue light. Against hyperpigmentation there are (tinted) sunscreens which on top contain the most potent human tyrosinase inhibitor found in dermatological skin care called Thiamidol® [8-9] and one of the 3 ingredients in the "new Kligman Trio" (NT) [18] and Glycyrrhetinic Acid which supports skin's DNA repair and skin pigmentation [10] and inhibits hyaluronidase activity (HYAL1). Most regular sun filters used in sunscreen don't offer any protection against blue light, however according to the website of BASF the chemical UV filters Tinosorb® A2B and Tinosorb® M can reduce the exposure to blue light. [11] Ectoin or ectoine has shown positive effects against high-energy visible light by decreasing the levels of OPN3 or Opsin-3, a photoreceptor involved in light perception, after HEVL exposure, suggesting role in mitigating light-induced stress on skin cells. Although ectoin does not act as an anti-oxidant or provide a physical barrier, it effectively preserves cellular integrity and function under HEVL stress conditions. [19] However, ectoine exhibits a complex effect on DNA damage, protecting against some forms of radiation-induced damage while potentially enhancing structural changes in DNA under certain conditions. [20] More data would be needed. Scattering and absorption of blue light [5] The penetration depth of visible light is influenced by the reflection, scattering, and absorption mediated not only by the skin’s physical barrier but also by the VL chromophores in the skin and Fitzpatrick skin or photo-type (FST). The primary VL-scatter and absorption molecules in the skin include hemoglobin, melanin, bilirubin, carotene, lipids, and other structures, including cell nuclei and filamentous proteins like keratin and collagen. Melanin and keratins are the primary VL absorbers and scatterers in the epidermis, while hemoglobin is the dominant absorber, and collagen is the major VL scatter in the dermis. Melanin's absorption spectrum ranges from 200 to 900 nm, with the peak absorption varying based on melanin moiety. This means that individuals with darker skin types, which have higher melanin content, are more prone to hyperpigmentation from blue light or VIS due to the greater absorption and scattering of VIS in their skin on top of the previously mentioned higher levels of tyrosinase–DCT complexes leading to increased melanogenesis, leading to both transient and long-lasting pigmentation [13], dependent upon the total dose and exacerbation of melasma especially in individuals with FSTs III to VI. Blue light tanning Recent data demonstrate synergistic effects between VL and UV-A on erythema and pigmentation. VL-induced pigmentation is more potent and more sustained than UVA1-induced pigmentation in darker skin tones.Typically, three mechanisms are involved in the responsive reaction of melanocytes to VL, with increased melanin content: immediate pigment darkening (IPD), persistent pigment darkening (PPD), and delayed tanning (DT). [15] Read more. VL can also exacerbate post inflammatory hyperpigmentation (study with FST IV and V). [16] Blue light therapy While the detrimental effects of blue light and HEV light on the skin have been well-documented, these wavelengths have also shown promise in the treatment of certain skin conditions. In controlled clinical settings, blue light has been used to: Treat Acne: Blue light can reduce the growth of Propionibacterium acnes, the bacteria responsible for acne, and has an anti-inflammatory effect. Manage Psoriasis and Atopic Dermatitis: Blue light has been found to have an anti-inflammatory and antiproliferative effect, making it potentially beneficial for the treatment of these chronic inflammatory skin diseases. Reduce Itch: Some studies have suggested that blue light may help alleviate the severity of itching in certain skin conditions. Vitiligo: Blue light therapy via LEDs can stimulate repigmentation in patients with vitiligo with minimal adverse events, however larger studies are needed. [17] The optimal protocols for blue light therapy are still being developed, and the long-term safety of this treatment modality requires further investigation and should not be initiated without HCP recommendation and monitoring. Overall, the research suggests that prolonged or excessive exposure to high-energy blue light, can have negative long-term effects on skin structure, function, and appearance in all phototypes. As our understanding of the individual variations in skin's response to blue light exposure deepens, the development of personalised or tailored effective solutions become increasingly more tangible. Always consult a qualified healthcare professional or dermatologist to determine what the most suitable approach is for your particular skin condition and rejuvenation goals. Take care! Anne-Marie
References
Mitochondria are the "powerhouses" or "lungs" of our cells and bioenergetic semi-autonomous organelles with their own genomes and genetic systems. [1] They are responsible for generating the energy that fuels a wide range of cellular processes in the skin, including cell signaling, pigmentation, wound healing, barrier integrity [2], metabolism and quality control. [3] Mitochondria exist in each cell of the body and are generally inherited exclusively from the mother. Their primary role is cellular respiration; a process converting the energy in nutrients (like glucose) into a usable form of energy called ATP or Adenosine Triphosphate. Mitochondria are particularly abundant in the skin, reflecting the skin's high metabolic demand. When the functionality of mitochondria is impaired or declines, it impacts skin's vitality, health and beauty. Mitochondrial dysfunction is 1 of the 12 hallmarks of skin ageing.
The skin is particularly susceptible to mitochondrial stress due to its constant exposure to environmental insults, such as UV radiation, pollution, and other oxidative stressors. These factors can damage mitochondrial DNA, leading to increased production of reactive oxygen species (ROS) and disrupting the delicate balance of cellular processes. [4] In aged post-mitotic cells, heavily lipofuscin-loaded lysosomes perform poorly, resulting in the enhanced accumulation of defective mitochondria, which in turn produce more reactive oxygen species causing additional damage (the mitochondrial-lysosomal axis theory). [5] Optimal mitochondrial function is indispensable for sustaining the specialized functions of each cell type, like keratinocyte differentiation, fibroblast ECM production, melanocytes melanin production and distribution, immune cell surveillance, sebocytes and adipocytes. [6] Mitochondrial dysfunction is both directly and indirectly linked to chronological ageing and photo-ageing. [7] As mitochondrial function declines, the skin's ability to regenerate and repair itself is decreased. [2] This results in visible signs of aging, such as wrinkles, loss of elasticity, dryness, uneven pigmentation, melasma, age spots, lipomas, impaired wound healing. [2-4-5-8-9] Mitochondrial dysfunction also has been implicated in skin conditions like acne, eczema, lupus, psoriasis, vitiligo, atopic dermatitis and even skin cancer. [10] Ageing is associated with changes in mitochondrial morphology, including [6] ▌Hyperfusion or increased fragmentation ▌Loss of mitochondrial connectivity [11-7] ▌Decline in the efficiency of oxidative phosphorylation, leading to reduced ATP production ▌Decline mitochondrial membrane potential (ΔΨM) ▌Compromised cellular energy metabolism ▌Reduced mitochondrial turnover (downregulated biogenesis) ▌Impaired mitochondrial quality control such as mitophagy (removal of damaged mitochondria through autophagy) [6] These alterations are related to the increased production of ROS exhibited by mitochondria during ageing, the accumulation of which causes oxidative damage to mitochondrial and cell components contributing to cellular senescence. [12] Good mitochondrial function or metabolism: [7] ▌Redox homeostasis: (the way of reducing oxidative stress) - mitochondrial respiration and ROS production are essential for keratinocyte differentiation ▌ATP production: Adenosine Triphosphate provides energy to drive and support many processes in living cells (and GTP) ▌Respiration: mitochondrial respiration is the most important generator of cellular energy ▌Biogenesis: allows cells to meet increased energy demands, to replace degraded mitochondria and is essential for the adaptation of cells to stress [6] ▌Calcium homeostasis ▌Cellular growth ▌Programmed cell death (apoptosis) reducing cell senescence [13] ▌Mitochondrial protein synthesis: mitochondria typically produce 13 proteins encoded by mitochondrial DNA (mtDNA) Dysfunctional Mitochondria: [7] ▌Oxidative stress ▌Decreased ATP levels ▌Dysfunctional OXPHOS: Oxidative phosphorylation, a metabolic pathway in which enzymes oxidize nutrients to release stored chemical energy in the form of ATP ▌Altered mitochondrial biogenesis ▌Calcium imbalance ▌Cell death Mitochondrial proteins Mitochondria contain >1,100 different proteins (MitoCoP) that often assemble into complexes and supercomplexes such as respiratory complexes and preprotein translocases. The chaperones Heat Shock Proteins HSP60-HSP10 are the most abundant mitochondrial proteins. [3] Small heat shock proteins form a chaperone system that operates in the mitochondrial intermembrane space. Depletion of small heat shock proteins leads to mitochondrial swelling and reduced respiration. [14] Mitochondrial hyperpigmentation Emerging research has shed light on the intricate relationship between mitochondrial dysfunction and the development of hyperpigmentation, a condition characterized by the overproduction and uneven distribution of melanin in the skin. One of the key mechanisms underlying this connection is the role of mitochondria in the regulation of melanogenesis, the process by which melanin is synthesized. Mitochondria are involved in the production of various cofactors and signaling molecules that are essential for the activity of tyrosinase, the rate-limiting enzyme in melanin synthesis. [15] When mitochondrial function is impaired, it can lead to an imbalance in the production and distribution of these cofactors and signaling molecules, ultimately resulting in the overproduction and uneven deposition of melanin in the skin. [15] This can manifest itself as age spots, melasma, and other forms of hyperpigmentation. The link between mitochondrial dysfunction and hyperpigmentation has been further supported by studies on genetic disorders that involve mitochondrial dysfunction, such as mitochondrial DNA depletion syndrome. In these conditions, patients often exhibit a range of pigmentary skin changes, including patchy hyper- and hypopigmentation, as well as reticular pigmentation. [16] Mitochondrial crosstalk and exosomes Mitochondria can crosstalk and move beyond cell boundaries. [17] Mitochondria-derived material might be transferred to neighboring cells in the form of cell-free mitochondria or included in extracellular vesicles [18-19]. This process supports cellular repair and contributes to vital mitochondrial functions. Besides restoring stressed cells and damaged tissues due to mitochondrial dysfunction, intercellular mitochondrial transfer also occurs under physiological and pathological conditions. [20] The transfer of active mitochondria from mesenchymal stem cells (MSCs) has been identified as a repair mechanism for rejuvenating damaged skin fibroblasts. [21] MITOCHONDRIAL SUPPORT Move According Martin Picard phD being physically active is a protective factor against almost everything health related. Exercise stimulates the production of mitochondria as more energy is required. Be hungry sometimes If there is too much supply of energy acquired via food leads to mass shrinking of mitochondria or fragmentation. Don´t over-eat, be calorie neutral and sometimes being calorie deficient is good for mitochondria. Maintain a healthy weight, preferably with a mediterranean diet containing phenolic and polyphenolic compounds (increase mitochondrial function and number) nitrate rich vegetables, soybeans and cacao beans. Mitohormesis In model organisms, lifespan can be improved by compromising mitochondrial function, which induces a hormetic response (“mitohormesis”), provided that this inhibition is partial and occurs early during development. Feel good Feeling good (positivity), especially at night, has a scientifically proven positive effect on mitochondrial health index, it is even a predictive factor. Q10 or Coenzyme Q10 (CoQ10) Q10 is part of the mitochondrial respiration chain and essential for cellular energy production. About 95% of our cellular energy is generated with support of Q10, which is produced by the human body itself. During skin ageing, both the cellular energy production and levels of Q10 are declined. Q10 is a powerful anti-oxidant [22], thus protecting cells from oxidative stress and damage and has proven to be able to "rescue" senescent cells by decreasing elevated senescent markers like p21 levels and β-Galactosidases positive cell numbers (in-vitro). Q10 is bio-active, increasing collagen type I and elastin production. [23] Q10 can be supplemented via nutrition, however also via topical application and is considered an evidence based active ingredient in skin care products. Ubiquinol (reduced form) shows higher bioavailability compared to ubiquinone (oxidized form). [23] Pyrroloquinoline quinone (PQQ) Q10 improves the energy in the mitochondria, however PQQ has shown to increase the number of mitochondria and a redox maestro. I´ve written a full post about this compound, which can be found as skincare ingredient and supplement. Read more about PQQ Glutathione Glutathione is formed in cell's cytoplasm from glutamic acid, cysteine and glycine. It is present in 2 forms: reduced (GSH) and oxidized (GSSG). Reduced GSH is an active anti-oxidant, while the presence of inactive GSSG is increased under oxidative stress. The ratio between GSH and GSSH is considered a measure of oxidative stress. Glutathione participates in redox reactions, acts as co-factor of many anti-oxidant enzymes and is the most important non-enzymatic anti-oxidant, essential for synthesis of proteins and DNA. Low Glutathione results in accelerated ageing and inflammatory skin diseases. Mitochondrial glutathione (mGSH) is the main line of defense for the maintenance of the appropriate mitochondrial redox environment to avoid or repair oxidative modifications leading to mitochondrial dysfunction and cell death. [24] Glutathione can be increased via supplementation via precursors cysteine or N-acetylcysteine (not recommended for pregnant women), a combination of Glycine and NAC (called GlyNAC) part of the popular "power of three" supplementation, or the reduced form of Glutathione itself, or increased via topical active ingredients like Licochalcone A. [25] I´ve written about GlyNAC in my post on autophagy. Nicotinamide NR nicotinamide ribosome which is the precursor of NMN nicotinamide mononucleotide which is the precursor of NAD+ nicotinamide adenine dinucleotide all could have a protective effect on mitochondria. Nicotinamide adenine dinucleotide is present in living organisms as ions NAD+ and NADP+ and in reduced forms NADH and NADPH. NADH is a cofactor of processes inside mitochondria: ▌ATP production ▌Activation of "youth proteins" sirtuins ▌Activation of PARP Poly (ADP-ribose) polymerase, a family of proteins involved in many cellular processes such as DNA repair, genomic stability and programmed cell death ▌Reduction of ROS (free radicals) NAD levels as lowered during ageing. [26] One of the fans of NMN supplementation is Harvard Professor David Sinclair, best known for his work on understanding why we age and how to slow its effects and also featured in my article about hormesis. There are about 14 studies done to date with NMN supplementation in humans, one of which was done by Professor Sinclair. NMN supplementation does raise NAD levels, however there aren't substantial proven health benefits, unless you are unhealthy. Resveratrol Although systemically Resveratrol promotes mitochondrial biogenesis. [27] Other data shows that UVA (14 J/cm(2)) along with resveratrol causes massive oxidative stress in mitochondria. As a consequence of oxidative stress, the mitochondrial membrane potential decreases which results in opening of the mitochondrial pores ultimately leading to apoptosis in human keratinocytes. [28] Magnesium Magnesium supplementation has been shown to improve mitochondrial function by increasing ATP production, decreasing mitochondrial ROS and calcium overload, and repolarizing mitochondrial membrane potential. There are many forms of Magnesium, however Citrate, Malate and Orotate are particularly good for energy. L-Carnitine Placebo-controlled trials have shown positive effects of L-Carnitine supplementation on both pre-frail subjects and elderly men. The effect is possibly mediated by counteracting age-related declining L-carnitine levels which may limit fatty acid oxidation by mitochondria. NEW Ergothioneine (EGT) Ergothioneine (EGT) is a sulfur-containing amino acid derivative known for its antioxidant properties, particularly in mitochondria. It is transported into cells and mitochondria via the OCTN1 transporter, where it helps reduce reactive oxygen species (ROS) and maintain cellular homeostasis [29]. EGT binds to and activates 3-mercaptopyruvate sulfurtransferase (MPST), enhancing mitochondrial respiration and exercise performance [30]. It also protects against oxidative stress and inflammation, potentially benefiting conditions like neurodegenerative diseases [31]. Melatonin Not much talked about when it comes to mitochondria, however should not be ignored as mitochondria can benefit significantly from melatonin supplementation. 1. Antioxidant protection: Melatonin acts as a powerful antioxidant within mitochondria, scavenging free radicals and reducing oxidative damage to mitochondrial DNA and proteins [32][34]. 2. Regulation of mitochondrial homeostasis: Melatonin helps maintain electron flow, efficiency of oxidative phosphorylation, ATP production, and overall bioenergetic function of mitochondria [32][34]. 3. Preservation of respiratory complex activities: Melatonin helps maintain the activities of mitochondrial respiratory complexes, which are crucial for energy production [32][34]. 4. Modulation of calcium influx: Melatonin regulates calcium influx into mitochondria, helping prevent calcium overload which can be damaging [32][34]. 5. Protection of mitochondrial permeability transition: Melatonin helps regulate the opening of the mitochondrial permeability transition pore, which is important for maintaining mitochondrial integrity [32][34]. 6. Enhancement of mitochondrial fusion: Melatonin promotes mitochondrial fusion, which is part of the quality control process for maintaining healthy mitochondria [33]. 7. Promotion of mitophagy: Melatonin enhances the removal of damaged mitochondria through mitophagy, helping maintain a healthy mitochondrial population [33]. 8. Reduction of nitric oxide generation: Melatonin decreases nitric oxide production within mitochondria, which can be damaging in excess [32][34]. 9. Selective uptake by mitochondria: Melatonin is selectively taken up by mitochondrial membranes, allowing it to exert its protective effects directly within these organelles [34]. 10. Support of mitochondrial biogenesis: Some studies suggest melatonin may promote the formation of new mitochondria [33]. The key antioxidants used by mitochondria are Glutathione (GSH), Glutathione peroxidase (GPx), Coenzyme Q10 (CoQ10), Superoxide dismutase (SOD), Melatonin, Vitamin C (ascorbate) and Vitamin E (α-tocopherol). Red light therapy By incorporating red light therapy into your skin care routine, you can help to counteract the damaging effects of mitochondrial dysfunction and support the skin's natural renewal processes. As we continue to explore the 12 hallmarks of ageing, I am confident that we will gain even more valuable insights and develop breakthrough innovations that will improve skin quality, health, beauty and vitality. Always consult a qualified healthcare professional or dermatologist to determine what the most suitable approach is for your particular skin condition and rejuvenation goals. Take care! Anne-Marie References
3/20/2024 Comments Telomeres: tiny caps with big impact
Our DNA is as like precious book of life filled with information and instructions, with telomeres acting like the protective covers. Just as book covers get worn over time, our telomeres naturally shorten as we age. This shortening is like a biological clock, ticking away with each cell division.
Telomere shortening is considered one of the twelve key hallmarks of aging. Those hallmarks all play an important role in longevity, health-span, and skin quality, thus both health and beauty. Telomeres are the protective end-caps of chromosomes, similar to the plastic caps at the end of shoelaces. They maintain genomic stability and prevent chromosomal damage. Telomeres become slightly shorter each time a cell divides, and over time they become so short that the cell is no longer able to successfully divide. They shorten more rapidly in dermal fibroblasts compared to epidermal keratinocytes, hence there are significant differences amongst our cells. Telomeres in skin cells may be particularly susceptible to accelerated shortening because of both proliferation and DNA-damaging agents such as reactive oxygen species and sun exposure. [16]. When a cell is no longer able to divide due to telomere shortening, this can lead to
This consequently affects both health and beauty
FACTORS INFLUENCING TELOMERE SHORTENING Sleep quality Poor sleep quality significantly impacts telomere length:
INTERVENTIONS FOR TELOMERE PRESERVATION 1. Possible strategies to preserve telomere length
Telomerase is an enzyme that plays a crucial role in maintaining the length of telomeres and skin cell function. Telomerase is a ribonucleoprotein enzyme, meaning it contains both protein (TERT plus dyskerin) and RNA components (TER or TERC). Its primary function is to add repetitive DNA sequences (telomeres) to the ends of chromosomes, preventing them from shortening during cell division. Telomerase is active in embryonic stem cells, some adult stem cells, cancer cells, certain skin cells, specifically:
Poor sleep quality is associated with shorter telomere length. Studies have found significant associations between shortened telomere length and poor sleep quality and quantity, including obstructive sleep apnea [17]. Not feeling well rested in the morning was significantly associated with shorter telomere length in older adults [18]. Sleep loss and poor sleep quality may activate DNA damage responses and cellular senescence pathways [17]. Poor sleep can increase oxidative stress and inflammation, which may accelerate telomere shortening [17]. Disruption of circadian rhythms due to poor sleep may negatively impact telomere maintenance [17]. Improving sleep quality through lifestyle changes and sleep hygiene practices may help preserve telomere length. [19]
A study showed that diet, exercise, stress management, and social support could increase telomere length by approximately 10% over five years [20].
Adopt a plant-rich diet, such as the Mediterranean diet, which includes whole grains, nuts, seeds, green tea, legumes, fresh fruits (berries), vegetables (leafy greens), omega-3 fatty acids from sources like flaxseed and fish oil or fatty fish and foods rich in folate. This diet is rich in antioxidants and anti-inflammatory properties that help maintain telomere length [21]. 5. Fasting Fasting, especially intermittent fasting, has attracted interest for its potential impact on health, including telomere preservation. Multiple studies have shown that intermittent fasting (IF) and other fasting regimens can reduce markers of oxidative stress and inflammation. Research on animals has demonstrated that caloric restriction and intermittent fasting can boost telomerase activity and enhance telomere maintenance in specific tissues. A human study by Cheng et al. (2019) found a correlation between intermittent fasting and longer telomeres, by reducing PKA activity and IGF1 levels, which are crucial for regulating telomerase function. A study showed that 36 hours of fasting induced changes in DNA methylation and another one histone modifications, hence fasting has the potential to induce epigenetic changes. Important note: Be careful with a time-restricted eating schedule (often seen as a form of intermittent fasting, where you eat all meals within an 8 hour time-frame), especially women in menopause or people with a pre-existing heart condition. The American Heart Association presented data indicating that people with a pre-existing heart condition have a 91% higher risk of of death of a heart disease when following the time-restricted eating schedule with an 8 hour window, compared to those who eat within a 12-16 hours window. However, several experts have criticised the data, which aren´t published in a peer reviewed journal. When considering fasting, or a time-restricted eating schedule, especially for a longer period, talk to a qualified HCP first. 6. Exercise
EMERGING TECHNOLOGIES IN TELOMERE-TARGETING SKINCARE Small RNAs in skincare Small RNAs play a significant role in the effectiveness of telomere-targeting skincare by influencing skin regeneration and cellular processes. Recent research has highlighted their potential in enhancing wound healing and reducing scarring, which are critical aspects of maintaining healthy skin. Small RNAs, such as microRNAs, are involved in regulating gene expression related to skin aging and and show potential in telomere maintenance [29]. They can modulate the expression of genes that control cellular senescence, oxidative stress response, and inflammation, all of which are crucial for preserving telomere integrity and function [30].
RNAi technology in development RNAi-based skincare approaches could target genes involved in telomere maintenance or have effects on markers related to telomere biology:
RNA-based telomere extension is a method developed at Stanford University and uses modified RNA to extend telomeres in cultured human cells, allowing cells to divide more times than untreated cells [35]. IN OFFICE DERMATOLOGICAL TREATMENTS Aesthetic, regenerative treatments that support skin quality may indirectly support telomere preservation.
Telomere shortening questionable as stand-alone hallmark [36] Telomere length (TL) has long been considered one of the best biomarkers of aging. However, recent research indicates TL alone can only provide a rough estimate of aging rate and is not a strong predictor of age-related diseases and mortality. Other markers like immune parameters and epigenetic age may be better predictors of health status and disease risk. TL remains informative when used alongside other aging biomarkers like homeostatic dysregulation indices, frailty index, and epigenetic clocks. TL meets some criteria for an ideal aging biomarker (minimally invasive, repeatable, testable in animals and humans) but its predictive power for lifespan and disease is questionable. There is inconsistency in epidemiological studies on TL's association with aging processes and diseases. This has led to debate about TL's reliability as an aging biomarker. It's unclear if telomere shortening reflects a "mitotic clock" or is more a marker of cumulative stress exposure. TL is still widely used in aging research but there are ongoing questions about its usefulness as a standalone biomarker of biological age. As research in regenerative medicine advances, we're seeing promising developments in therapies targeting telomere biology for longevity, health and beauty. While telomere research is exciting, it's important to remember that it's just one part of a comprehensive approach to aging, and future treatments will likely combine multiple strategies to target preferably all 12 hallmarks for the best results. Always consult a qualified healthcare professional or dermatologist to determine what the most suitable approach is for you. . Take care! Anne-Marie
References
[1] Martin, H., Doumic, M., Teixeira, M.T. et al. Telomere shortening causes distinct cell division regimes during replicative senescence in Saccharomyces cerevisiae. Cell Biosci11, 180 (2021) [2] M. Borghesan, W.M.H. Hoogaars, M. Varela-Eirin, N. Talma, M. Demaria, A Senescence-Centric View of Aging: Implications for Longevity and Disease, Trends in Cell Biology, Volume 30, Issue 10, 2020, Pages 777-791, ISSN 0962-8924, [3] McHugh D, Gil J. Senescence and aging: Causes, consequences, and therapeutic avenues. J Cell Biol. 2018 Jan 2;217(1):65-77. [4] Oeseburg, H., de Boer, R.A., van Gilst, W.H. et al. Telomere biology in healthy aging and disease. Pflugers Arch - Eur J Physiol 459, 259–268 (2010) [5] Catarina M Henriques, Miguel Godinho Ferreira, Consequences of telomere shortening during lifespan, Current Opinion in Cell Biology, Volume 24, Issue 6, 2012 [6] Henriques CM, Ferreira MG. Consequences of telomere shortening during lifespan. Curr Opin Cell Biol. 2012 [7] Chaib, S., Tchkonia, T. & Kirkland, J.L. Cellular senescence and senolytics: the path to the clinic. Nat Med 28, 1556–1568 (2022) [8] Lei Zhang et al. Cellular senescence: a key therapeutic target in aging and diseases JCI The Journal of Clinical Investigation 2022 [9] Muraki K, Nyhan K, Han L, Murnane JP. Mechanisms of telomere loss and their consequences for chromosome instability. Front Oncol. 2012 Oct 4;2:135. [10] Marlies Schellnegger et al. Aging, 25 January 2024 Sec. Healthy Longevity Volume 5 - 2024 Unlocking longevity: the role of telomeres and it´s targeting interventions [11] Bär C, Blasco MA. Telomeres and telomerase as therapeutic targets to prevent and treat age-related diseases. F1000Res. 2016 Jan 20;5:F1000 Faculty Rev-89. [12] Kasiani C. Myers et al. Blood (2022) 140 (Supplement 1): 1895–1896. Gene therapies November 15 2022 Successful Ex Vivo Telomere Elongation with EXG-001 in a patients with Dyskeratosis Congenital Kasiani C. Myers et al. [13] Falckenhayn C, Winnefeld M, Lyko F, Grönniger E. et al. Identification of dihydromyricetin as a natural DNA methylation inhibitor with rejuvenating activity in human skin. Front Aging. 2024 Mar 4;4:1258184 [14] Minoretti P, Emanuele E. Clinically Actionable Topical Strategies for Addressing the Hallmarks of Skin Aging: A Primer for Aesthetic Medicine Practitioners. Cureus. 2024 Jan 19;16(1):e52548 [15] Guterres, A.N., Villanueva, J. Targeting telomerase for cancer therapy. Oncogene 39, 5811–5824 (2020). [16] Buckingham EM, Klingelhutz AJ. The role of telomeres in the ageing of human skin. Exp Dermatol. 2011 Apr;20(4):297-302. [17] Debbie Sabot, Rhianna Lovegrove, Peta Stapleton, The association between sleep quality and telomere length: A systematic literature review, Brain, Behavior, & Immunity - Health, Volume 28, 2023, 100577, ISSN 2666-3546 [18] Iloabuchi, Chibuzo et al. Association of sleep quality with telomere length, a marker of cellular aging: A retrospective cohort study of older adults in the United States Sleep Health: Journal of the National Sleep Foundation, Volume 6, Issue 4, 513 – 521 [19] Rossiello, F., Jurk, D., Passos, J.F. et al. Telomere dysfunction in ageing and age-related diseases. Nat Cell Biol 24, 135–147 (2022) [20] Elisabeth Fernandez Research September 16 2013 Lifestyle changes may lengthen telomeres, A measure of cell aging. Diet, Meditation, Exercise can improve key element of Immune cell aging, UCSF Scientist report [21] Martínez P, Blasco MA. Telomere-driven diseases and telomere-targeting therapies. J Cell Biol. 2017 Apr 3;216(4):875-887. [22] Guo, J., Huang, X., Dou, L. et al. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Sig Transduct Target Ther 7, 391 (2022). [23] Hachmo Y, Hadanny A, Abu Hamed R, Daniel-Kotovsky M, Catalogna M, Fishlev G, Lang E, Polak N, Doenyas K, Friedman M, Zemel Y, Bechor Y, Efrati S. Hyperbaric oxygen therapy increases telomere length and decreases immunosenescence in isolated blood cells: a prospective trial. Aging (Albany NY). 2020 Nov 18;12(22):22445-22456 [24] Gutlapalli SD, Kondapaneni V, Toulassi IA, Poudel S, Zeb M, Choudhari J, Cancarevic I. The Effects of Resveratrol on Telomeres and Post Myocardial Infarction Remodeling. Cureus. 2020 Nov 14;12(11):e11482. [25] Widgerow AD, Ziegler ME, Garruto JA, Bell M. Effects of a Topical Anti-aging Formulation on Skin Aging Biomarkers. J Clin Aesthet Dermatol. 2022 Aug;15(8):E53-E60. PMID: 36061477; PMCID: PMC9436220. [26] Alt, C.; Tsapekos, M.; Perez, D.; Klode, J.; Stoffels, I. An Open-Label Clinical Trial Analyzing the Efficacy of a Novel Telomere-Protecting Antiaging Face Cream. Cosmetics 2022, 9, 95. [27] Cosmetics & Toiletries Telomere protection: Act on the origin of youth, June 3th 2015 Sederma [28] Yu Y, Zhou L, Yang Y, Liu Y. Cycloastragenol: An exciting novel candidate for age-associated diseases. Exp Ther Med. 2018 Sep;16(3):2175-2182. [29] Gerasymchuk M, Cherkasova V, Kovalchuk O, Kovalchuk I. The Role of microRNAs in Organismal and Skin Aging. Int J Mol Sci. 2020 Jul 25;21(15):5281. [30] Jacczak B, Rubiś B, Totoń E. Potential of Naturally Derived Compounds in Telomerase and Telomere Modulation in Skin Senescence and Aging. International Journal of Molecular Sciences. 2021; 22(12):6381. [31] Roig-Genoves, J.V., García-Giménez, J.L. & Mena-Molla, S. A miRNA-based epigenetic molecular clock for biological skin-age prediction. Arch Dermatol Res 316, 326 (2024). [32] Eline Desmet, Stefanie Bracke, Katrien Forier, Lien Taevernier, Marc C.A. Stuart, Bart De Spiegeleer, Koen Raemdonck, Mireille Van Gele, Jo Lambert, An elastic liposomal formulation for RNAi-based topical treatment of skin disorders: Proof-of-concept in the treatment of psoriasis, International Journal of Pharmaceutics, Volume 500, Issues 1–2, 2016, Pages 268-274, ISSN 0378-5173 [33] Oger E, Mur L, Lebleu A, Bergeron L, Gondran C, Cucumel K. Plant Small RNAs: A New Technology for Skin Care. J Cosmet Sci. 2019 May/Jun;70(3):115-126. PMID: 31398100. [34] Vimisha Dharamdasani, Abhirup Mandal, Qin M. Qi, Isabella Suzuki, Maria Vitória Lopes Badra Bentley, Samir Mitragotri, Topical delivery of siRNA into skin using ionic liquids, Journal of Controlled Release, Volume 323, 2020, Pages 475-482, ISSN 0168-3659 [35] Krista Conger January 2015 Stanford Medicine News Center Telomere extension turns back aging clock in cultured human cells, study finds [36] Alexander Vaiserman, Dmytro Krasnienkov Telemore length as marker of biological age: state-of-the-art, open issues and future perspectives Front. [37] Martínez P, Blasco MA. Telomere-driven diseases and telomere-targeting therapies. J Cell Biol. 2017 Apr 3;216(4):875-887
In skin biology, senescence is a process by which a cell ages and permanently stops dividing but does not die. This is why they are also referred to as "zombie cells". Age-related accumulation of senescent cells is caused by of increased levels of senescence-inducing stressors and/or reduced elimination of senescent cells. Under normal physiological conditions, senescent cells play an important role maintaining cellular homeostasis and inhibiting proliferation of abnormal cells. However, over time, large numbers of zombie cells can build up in the skin and contribute to the overall reduction in skin's regenerative properties, impacting both its beauty and health.
There are 2 forms of cell senescence: Acute senescence: Senescent cells are produced in response to acute stressors to facilitate for example tissue repair, wound healing. They are cleared by our immune system. Chronic senescence: A not programmed process as response to prolonged stress or damage and these senescent cells are not cleared by our immune system, leading to the accumulation of zombie cells impacting our skin health and beauty. It has been suggested that inflammageing is mainly related to senescent cells and their associated SASP (Senescence Associated Secretory Phenotype) which increase in the body with age and contribute to inflammageing. Senescent cells cause inflammageing and inflammageing causes cell senescence. [1] Senescence can be triggered by a number of stress signals to the cell [1]:
Mechanisms of skin cell senescence:
The presence of senescent cells accelerates the ageing process due to their communication with nearby cells through various molecules: [18]
Fibroblast senescence could be the main driver of the skin ageing. [3] The increased number of senescent fibroblasts results in the production of SASPs rich in pro-inflammatory cytokines, including interleukin (IL)-1, IL-6, IL-8, IL-18, matrix metalloproteinases (MMPs), and a variety of other inflammatory chemokines [2] resulting in the breakdown of collagen, loss of elasticity and wrinkle formation. [3] Autophagy in dermal fibroblasts is essential for maintaining skin balance and managing the ageing process, particularly in response to external stressors like UV radiation and particulate matter (PM), by repairing cellular machineries. [4] Insufficient autophagy leads to an exaggerated skin inflammation triggered by inflammasome activation, resulting in accelerated ageing characteristics. When exposed to UVB (in vitro), skin cell types like fibroblasts and keratinocytes show DNA damage and increased senescence markers, such as increased SASPs. [3] Dermal fibroblasts also release insulin-like growth factor (IGF)-1, essential for epidermal cell proliferation and differentiation. [5] IGF-1 signalling in senescent fibroblasts is significantly decreased [6]. Inhibition of the IGF-1 pathway decreases collagen production in the dermis, causing epidermal thinning. Additionally, mitochondrial dysfunction and increased levels of superoxide anions prompt fibroblast ageing, thereby speeding up the skin ageing process. [5] Fibroblasts isolated from photo-aged skin produce a greater amount of pro-melanogenic growth factors. [14] Ageing-associated pigmentation has also been reported to be driven by (UVA-induced) fibroblast senescence. [15-16] Keratinocyte senescence The epidermis shows less impact of senescent keratinocytes due to their quicker turnover in comparison to fibroblasts. Senescent keratinocytes experience reduced ECM production and cell adhesions [8], along with elevated MMP expression in UV-induced senescence [9], and increased SASP levels, including pro-inflammatory cytokines. [10] Airborn particulate matter (PM2.5) can penetrate a disrupted skin barrier. PM2.5-induced ROS leads to epigenetic modification: reduced DNA methyltransferase, elevated DNA demethylase expression, p16INK4a promotor hypomethylation and therewith accelerated keratinocyte senescence. [11] Keratinocytes are the main type of cells that signal the need for melanogenesis. [12] UVR-induced DNA damage in keratinocytes activates melanogenesis. [13] Melanocyte senescence Senescent melanocytes express markers of inflammageing and dysfunctional telomeres. Senescent melanocyte SASPs induce telomere dysfunction and limit the proliferation of the surrounding cells, hence, senescent melanocytes affect and impair basal keratinocyte proliferation and contribute to epidermal atrophy. [17] STRATEGIES TO COMBAT CELL SENESCENCE PREVENTION Sunscreen: Protection against UV radiation combined with blue light defense (Licochalcone A: powerful anti-oxidant, Nrf2-Activator & increasing Glutathione + Colour pigments) and prevention + repair DNA damage (Glycyrrhetinic Acid) INTERVENTION Senotherapeutics can be classified into three development strategies: [25]
Skin care ingredients: [18]
Of course a healthy life-style and diet (consider also intermittent fasting) will support both your body & skin longevity and beauty Prevention and intervention of skin cell senescence offers a promising approach to improve skin health and beauty. Always consult a qualified healthcare professional or dermatologist to determine the most suitable approach for your particular skin condition and rejuvenation goals. Take care! Anne-Marie References
Many of the skin regenerating or rejuvenating treatments, like energy based devices in the doctors-office are based on the principle to cause controlled damage and therewith provocation of a skin rejuvenating repair response. One of the fascinating mechanisms behind laser "damage" is the heat shock response leading to increased production of regenerating heat shock proteins (HSPs). Heat shock proteins respond to heat stress, are crucial cellular defence mechanisms against stress (environmental and physiological), act as chaperones, aiding in protein folding, prevention of protein damage, cellular protection and repair, with other words HSPs play a crucial role in proteostasis. [1]
HEAT SHOCK PROTEINS AND OX-INFLAMMAGEING UV radiation and blue light cause oxidative stress and inflammation, and can overwhelm skin's own capacity to counteract the increased formation of reactive oxygen species (ROS) and inflammatory mediators. Chronic oxidative stress state and chronic low grade of inflammation are hallmarks of skin ageing and their combination can be called ox-inflammageing. Oxidative stress and inflammation alter cellular signal transduction pathways and thereby the expression of the ECM genes as well as the structure of the ECM proteins like collagen, fibronectin and elastin. Their reduced expression and increased degradation manifests eventually at the skin surface as wrinkles, loss of firmness, and elasticity. Heat shock proteins are chaperone proteins that facilitate the formation of the ECM and prevention of molecular oxidative damage or degradation and are classified based on their molecular weights.
HEAT SHOCK PROTEINS AND PROTEOME Proteostasis, or protein homeostasis, refers to the balance between protein synthesis (like collagen, fibronectin and elastin), folding, and degradation. As we age, this balance is disrupted, leading to the accumulation of misfolded and aggregated proteins [10]. Loss of proteostasis is another hallmark of aging and HSPs play a crucial role in maintaining proteostasis through several mechanisms: 1. Protein folding: HSPs assist in the proper folding of newly synthesised proteins and refolding of misfolded proteins [10][11]. 2. Protein degradation: HSPs collaborate with the ubiquitin-proteasome system and autophagy to target misfolded proteins for degradation [10][12]. 3. Stress response: Under stress conditions, HSPs are upregulated to protect cells from protein damage and maintain cellular functions [13][14]. HSP-70 and HSP-90 are particularly important in protein folding and refolding, while small HSPs are involved in preventing protein aggregation [11][14]. Several studies have provided evidence supporting the potential of HSPs as an intervention to improve proteostasis: lifespan extension: [15], neuroprotection (HSP70), stress resistance and cellular survival [13][14], protein aggregation prevention (small HSPs) [11][14], autophagy regulation and particularly HSP70 is crucial for cellular protein quality control [16]. STIMULATION OF REJUVENATING HEAT SHOCK PROTEINS Heat shock protein synthesis can be initiated not only by heat but also by many chemical and physical stimuli, such as heavy metals, amino acid analogues, oxidative stress, viral infection and UV and ionizing irradiation. [17] Exercise and hormesis: Mild stress induced by exercise or other hormetic interventions has been shown to upregulate HSPs and improve proteostasis. Laser Laser treatments have been shown to induce a heat shock response in the skin from epithelial cells to deeper connective tissues, leading to the production of heat shock proteins. This response is characterized by the temporary changes in cellular metabolism, release of growth factors, and increased cell proliferation and thus contribute to tissue regeneration and rejuvenation. [17] CBD It has been proven that a large number of genes belonging to the heat shock protein super-family were up-regulated following cannabidiol (CBD) treatment. [18] UV radiation Ultraviolet radiation (UV)‐induced cell death and sunburn cell formation can be inhibited by previous heat shock exposure and UV itself can induce HSP expression. However, levels of HSP-27 have been found to be elevated in sun‐protected aged skin indicating a link between HSP-27 expression and age‐dependent epidermal alterations. [19] I would recommend daily protection from UV radiation and blue light (or high energy visible light). Ultrasound Ultrasound exposure at different frequencies, intensities, and exposure times can induce HSP-72 expression. Higher ultrasound frequencies, such as 10 MHz, have been found to significantly increase HSP-72 levels. Additionally, increasing the temperature during ultrasound exposure has shown to enhance HSP-72 expression. Interestingly, ultrasound at 1 MHz was unable to induce HSP-72 significantly, while 10 MHz ultrasound induced HSP-72 after 5 minutes of exposure. [16] Radiofrequency Radiofrequency has been shown to increase HSP-70 and decrease melanin synthesis and tyrosinase activity. [20] RF-US treatment significantly increased levels of HSP47 proteins. [21] Red & near infra red light Although I've not seen much peer reviewed published evidence, red light and near infra red light therapy may release the HSPs in the skin if tissue reaches >42 - 45 degrees (even for 8 - 10 seconds). Nicotinamide Nicotinamide and its derivatives have been found to stimulate the expression of heat shock proteins, including HSP-27, HSP-47, HSP-70, and HSP-90 in the skin. These proteins play as mentioned before an essential role in collagen production, skin protection, skin health and rejuvenation. [6] NAD as nutrient interestingly has proven to tweak the epigenome by modulating DNMT1 enzymatic DNA methylation and cell differentiation. [22] In topical applications an ingredient called Dihydromyricetin also called Epicelline® has been successful in inhibiting DNMT1 enzyme activity biochemical assays. [23] Stimulation of heat shock proteins offers a promising and novel invasive, non invasive and topical approach for skin regeneration, rejuvenation, reduction of ox-inflammageing and prevention of loss of proteostasis. Always consult a qualified healthcare professional or dermatologist to determine the most suitable approach for your particular skin condition and rejuvenation goals. Take care! Anne-Marie References
Like epigenetics and exosomes, neurocosmetics represent a revolutionary approach for skin care incorporating neuroscience principles, leveraging the skin-brain connection to improve skin health and beauty. The term itself is a fusion of the words neuroscience and cosmetics. It differs from psychodermatology which like neurocosmetics connects the interaction between mind and skin, but in a different way. Some describe it as how simple sensory stimulation can improve our overall wellbeing and call it "mood beauty", however this doesn't do it justice as neurocosmetics go beyond mood boosting skincare.
DEFINITION NEUROCOSMETICS Dermatologist Professor Laurent Misery back in 2002 described that neurocosmetics are products which are supposed to modulate the neuro-immuno-cutaneous-system (NICS) function at an epidermal level. Skin cells can produce neuromediators, which are mediators for transmission of information between skin, immune and the nervous system. All skin cells express specific receptors for neuromediators and by binding of the neuromediator to its receptor, modulation of cell properties and skin functions are induced like cell differentiation and proliferation (renewal), pigmentation, etc. Hence, keratinocytes, Langerhans cells, melanocytes, endothelial cells, fibroblasts and the other cells of the skin are modulated and controlled by the nerves and in return skin is able to modulate neuronal activity and growth. [1] SKIN-BRAIN CONNECTION In an article from the International Journal of Novel Research and Developments, the skin-brain connection was described as a psychobiological concept that highlights how emotions, stress, and neurotransmitters impact skin health. Indicating that the skin acts as a neuroimmunoendocrine organ, emphasizing its sensitivity to neural signals and stress responses. [4] CUTANEOUS NERVOUS SYSTEM The skin a sophisticated sensory organ that allows you to interact with your environment through touch and feel. It contains a complex network of nerves that send information about sensations like pressure, pain, itch and temperature from the skin through the spinal cord to the brain [9]. The dynamic interactions between the skin and the nervous system is influenced by factors like stress and inflammation, which can impact skin health and ageing. [7] Nerves in the skin: These nerves are like tiny messengers that tell your brain about what your skin is feeling: pressure, heat or pain. Types of nerve fibers: Some are thick and wrapped in a protective coating, which helps them send messages quickly. Others are thin and slow but are very good at sending messages about pain or temperature changes. [3] Sensory receptors: These receptors can tell if something is touching the skin lightly or if there's a lot of pressure. They can also sense if something is hot, cold, or causing pain. [3] Autonomic nervous system: Part of the cutaneous nervous system helps control things that happen in the skin automatically, like sweating to regulate body temperature. [8] Nerve cells: There are about 20 different types of neurons in our skin. [10] The contribution of epidermal keratinocytes to NICS [3]
CUTANEOUS NEURO-AGEING Neuro-ageing is defined as the changes in the nervous system which cause continuous neurodegeneration due to oxidative stress, neuroinflammation or impaired neuromodulation. As skin ages, Aβ-toxin (increased by oxidative stress) accumulates at the nerve endings innervating the tissue, causing disrupted cellular communication, particularly affecting fibroblasts’ ability to produce collagen and extracellular matrix. On top there is a decrease of nerve growth factor (NGF) production, important for the development and maintenance of nerve cells. Different factors can lead to a drop in NGF production, resulting in malfunctioning keratinocytes and reduced lipolytic activity of adipocytes, visibly impacting skin hydration and firmness. [6] Skin nerve fibres are significantly reduced in number following UV irradiation and in ageing skin [5] and therefore neuro-protectors or targetting neurodegeneration can reduce stress manifestations and promote healthy cellular communication for optimal skin function. [3] Although not much is known regarding skin specific or topical neuroprotectors (most research was focussed on the brain), probably potent anti-oxidants, by significantly reducing oxidative stress from UV and blue light and anti-inflammatory ingredients may inhibit skin neuro-ageing and can be neuroprotective especially when combined with sunscreen and strengthening of the skin barrier. NEUROCOSMETIC VARIETY OF ACTIONS
THE FUTURE OF NEUROCOSMETICS The neurocosmetics market is booming, with a projected value of USD 2.69 billion by 2030. [11] The future of neurocosmetics holds promise for innovative ingredients and concepts that harness new neuroscientific insights to revolutionize skin care and sunscreen formulations, to cater to both physical and emotional aspects of skin health and beauty. Take care! Anne-Marie References
One of the people I follow ever since I started to work on skin epigenetics back in 2017 and longevity is Harvard professor David Sinclair. He is best known for his (sometimes controversial) work on understanding why we age and how to slow its effects. He was talking about hormesis, a phenomenon where exposure to low doses of stressors induces beneficial effects. A hormetic (cellular defense) response can modulate ageing processes by activating genes related to maintenance and repair pathways through mild stress exposure in our body and skin, leading to enhanced longevity (thus anti-ageing) and health. [1 - 2]
Originating from the early 2000s, the concept of hormesis has evolved to evidenced based dermatological applications. [3] Various factors, including environmental stressors, lifestyle choices, and genetic predispositions, can influence the hormetic responses in skin cells. Understanding these influences is essential for optimizing skin health and beauty through hormetic pathways. Many terms are used for hormetic responses in the scientific literature, including the Arndt-Schulz Law, biphasic dose response, U-shaped dose response, preconditioning/adaptive response, overcompensation responses, rebound effect, repeat bout effect, steeling effect, among others. [4] Ageing is an emergent, epigenetic and a meta-phenomenon, not controlled by a single mechanism. Cellular damage has three primary sources: [3]
Effective homeodynamic space or buffering capacity (body's ability to maintain stability or balance in changing conditions) is characterized by:
Stress response is a reaction to physical, chemical, or biological factors (stressors) aimed at counteracting, adapting, and surviving, is a critical component of the homeodynamic space. There are seven main cellular stress response pathways:
Hormetins can be categorized into three types:
Hallmarks of aging benefiting from hormesis 1. Loss of proteostasis Hormetic stress can upregulate heat shock proteins (HSPs) and other molecular chaperones, improving protein folding and maintenance. [9] This directly supports proteostasis, which is crucial for cellular (skin) health and longevity. 2. Mitochondrial dysfunction Mild stress can stimulate mitochondrial biogenesis and improve mitochondrial function, potentially counteracting age-related mitochondrial decline.[9] 3. Cellular senescence Hormetic interventions may help clear senescent cells or prevent their accumulation, though this effect is less direct and requires further research. [8] 4. Deregulated nutrient sensing Hormetic stressors like caloric restriction or intermittent fasting can improve nutrient sensing pathways, particularly involving sirtuins and AMPK. [9] 5. Epigenetic alterations Some hormetic stressors can influence epigenetic markers, potentially reversing age-related epigenetic changes. [8] 6. Stem cell exhaustion Mild stress may stimulate stem cell activity and regeneration, though this effect varies depending on the type and intensity of the stressor. [9] 7. Altered intercellular communication Hormesis can modulate inflammatory responses and improve intercellular signaling, potentially addressing the "inflammaging" phenomenon. [8][9] Being aware of the phenomenon of hormesis can result in discovering the usefulness of new compounds, or synergistic effects of combining hormetic treatments which otherwise may have been rejected due to their effects of stress induction. What is bad for us in excess, can be beneficial in moderation, or (quote): "What doesn't kill you makes you stronger". [6]. The future of hormesis in dermatology holds great promise for innovative interventions, advanced hormetic technologies or personalized skin care regimens. Always consult a qualified healthcare professional or dermatologist to determine the most suitable approach for your particular (skin) condition and rejuvenation goals. Take care! Anne-Marie
Read more:
The impact of senescent zombie cells on skin ageing The role of heat shock proteins in skin rejuvenation Neurocosmetics, the skin-brain connection & neuro-ageing The role of the lymphatic system in ageing skin The power of light and photo-biomodulation Bio-stimulators Skin glycation Exosomes References
Have you ever wondered what those SPF numbers really mean, or how they're determined? From cutting-edge measurement techniques to the truth about water resistance, UV-filters, the world of sunscreen is far more interesting than you might think. Whether you're a beach enthusiast, interested in your skin`s health and beautyspan, or just curious about the science behind your daily skincare routine, this post will shed new light on the powerful protective shield between you and the sun's rays including some useful tips. SPF SPF means Sun Protection Factor. The labelled SPF is not indicating the amount of time you can stay in the sun safely, like for example with SPF 50, it would be 50 minutes, however it indicates how much longer it takes for you to get a sunburn (primarily but not exclusively caused by UVB). Thus with SPF 50, it would take 50 times longer. This is very specific for you and depends on factors like ▌Your phototype ▌UV index, cloudy day or not ▌Season & climate ▌Time of day ▌Latitude & altitude ▌How much product you applied: amount ▌How well you distributed the product: coverage ▌Rubbing off: clothes or touching towelling ▌Sweating ▌Activities like swimming, sauna, etc SIGNIFICANT DIFFERENCES SPF A misconception I would like to address is that the difference between an SPF 30 and SPF 50 of SPF100 is just minor and thus not worth the investment. First, the listed SPF refers predominantly to UVB rays. I will explain UVA protection. SPF 30 blocks 96.7% and SPF 50 97.8%, of UVB rays, this is about 1% difference in “blocking”, and it might seem not a big difference, however SPF50 is 33.3% more effective than SPF 30! We need to look at the % of UVB rays which are still able to damage your precious skin. This moreover translates into a significant difference in immune-suppresion, genomic stability or DNA damage (the root cause for skin cancer and major contributor to premature aging) and inflammation. For example the difference between SPF 100 and 50+ is 45% less DNA damage and 24% less inflammation and thus a significant difference. [1] UVB + UVA Protection ▌SPF 15: Blocks approximately 93.3% of UVB rays Allows about 6.7% of UVB rays to penetrate The minimum UVA protection factor should be 5 ▌SPF 30: Blocks about 96.7% of UVB rays Allows about 3.3% of UVB rays to penetrate The minimum UVA protection factor should be 10 ▌SPF 50: Blocks around 97.8% of UVB rays Allows about 2.2% of UVB rays to penetrate The minimum UVA protection factor should be approximately 16.7 ▌SPF 50+ (measured SPF ≥ 60): Minimum UVA protection factor of 20 ▌SPF 100 (Medical Device): Blocks approximately 99% of UVB rays Allows about 1% of UVB rays to penetrate The minimum UVA protection factor should be approximately 33.3 MEASUREMENT SPF SPF (Sun Protection Factor) measurement involves several methods, each with its own advantages and pitfalls. In vivo method (ISO 24444) ISO 24444 is the international standard for the in vivo determination of the Sun Protection Factor (SPF) of sunscreen products. This standard specifies a method for evaluating how well a sunscreen protects human skin against erythema, which is the reddening of the skin caused by UV radiation exposure. ▌In vivo testing: The SPF is determined by testing on human subjects. A controlled amount of sunscreen is applied to the skin, and the test involves measuring the Minimal Erythema Dose (MED) with and without sunscreen. The SPF is calculated as the ratio of these doses. ▌Procedure: The test involves exposing treated and untreated skin areas to UV radiation using a solar simulator. The MED is determined by observing the point at which slight but visible reddening occurs on the skin after exposure. ▌SPF Calculation: The SPF value is calculated as an arithmetic mean of all valid individual SPF values obtained from all test subjects. ▌Global Adoption: ISO 24444 has been widely adopted in nearly 60 countries, including those in Europe, Australia, New Zealand, Japan, and several others, ensuring a harmonized approach to SPF testing across different regions. ▌Advantages: Provides real-world data on sunscreen performance. ▌Disadvantages: Requires exposure of human subjects to UV radiation and sunburn (unethical). Can be time-consuming and expensive. Results may vary due to individual skin differences. In Vitro Spectrophotometric Method ▌Process: Uses a spectrophotometer to measure UV transmission through a thin film of sunscreen applied to a substrate. ▌Measurement: Calculates SPF based on the absorption spectrum. ▌Advantages: Rapid, cost-effective, and doesn't require human subjects. ▌Disadvantages: May not accurately represent real-world conditions. Results can be affected by the substrate used and application technique. Double Plate Method (DPM), also known as the Cosmetics Europe In vitro method Is a technique under development as ISO 23675. The Double Plate Method offers a promising alternative for sunscreen testing by eliminating the need for human subjects and providing a more standardized approach to measuring SPF. It is expected to be officially published as an international standard in early 2025. ▌Dual plate system: Utilizes two types of PMMA plates—moulded and sandblasted—to simulate the skin's surface. The combination of these plates helps overcome limitations related to the affinity of different sunscreen formulations for a single type of plate. ▌Automated spreading: The sunscreen is applied to the plates using a robot, ensuring consistent application that mimics human application but with improved reproducibility. ▌UV exposure: The plates are exposed to UV radiation with a spectrum similar to that used in the in vivo ISO 24444 method, allowing for assessment of the sunscreen's photostability and effectiveness. ▌Measurement: Initial absorbance is measured before UV exposure, and final absorbance is measured post-exposure. These measurements are used to calculate the in vitro SPF. ▌Validation and standardization: The method is currently in the validation process by ISO experts and aims to provide accurate, repeatable, and reproducible SPF predictions. Hybrid Diffuse Reflectance Spectroscopy (HDRS) Hybrid Diffuse Reflectance Spectroscopy (HDRS) is newer technique and associated with the ISO 23698 standard. This method is being developed as a non-invasive alternative to traditional SPF measurement methods like ISO 24444, which involves in vivo testing on human skin using UV radiation to provoke an erythemal response. ▌Non-Invasive: HDRS does not require UV exposure that causes erythema (skin reddening), thus addressing ethical concerns associated with traditional SPF testing methods. ▌Hybrid approach: Combines in vivo diffuse reflectance spectroscopy on the skin with in vitro transmission measurements of sunscreen products. This allows for comprehensive assessment without causing physical harm to test subjects[5]. ▌Comprehensive assessment: Provides a hybrid spectrum that evaluates both UVB and UVA protection, correlating closely with traditional in vivo SPF and in vitro UVA protection factor (UPF) test results[3]. ▌Ethical and safe: Eliminates the need for UV-induced skin reactions, making it a more ethical testing method. ▌Efficient: Reduces the time required for testing compared to traditional methods. ▌Reliable: Demonstrated good correlation with established standards like ISO 24444 and ISO 24443, making it a viable alternative for sunscreen testing. The HDRS method is currently at the Final Draft International Standard (FDIS) stage, indicating it is close to becoming an official ISO standard, expected to be published in early 2025. Researchers and regulatory bodies continue to work on improving these methods to ensure more accurate and reliable SPF measurements across different sunscreen formulations. UVA PROTECTION A higher SPF value generally correlate with higher UVA protection, especially in regions requiring the 1:3 UVAPF-to-SPF ratio for broad-spectrum labeling. It is called the UVA-COLIPA ratio as defined in ISO 24443 or Critical Optical Radiation Absorption (CORA). CORA is a measure used to assess the UVA protection of sunscreen products. According to European regulations, the UVA protection factor of a sunscreen must be at least one-third of its labeled SPF value. This ensures that sunscreen products provide a minimal and balanced level of protection against both UVA and UVB radiation. UVA protection in sunscreens is sometimes not listed but disclosed on the product by a black circle with UVA in it, or listed and measured using different systems across various continents: Europe The UVAPF is not per se disclosed on the product.Look for the black circle with UVA written in it. ▌PPD (Persistent Pigment Darkening): Measures UVA protection directly. ▌UVAPF (UVA Protection Factor): Must be at least 1/3 of the labeled SPF value. ▌Critical Wavelength: At least 370 nm for broad-spectrum protection. Asia (particularly Japan and Korea) PA System: Derived from PPD measurements. ▌PA+ (PPD 2-4) ▌PA++ (PPD 4-8) ▌PA+++ (PPD 8-16) ▌PA++++ (PPD 16 or higher) United States ▌Broad Spectrum: Indicates UVA protection, but no specific rating system. ▌Critical wavelength of at least 370 nm required for broad-spectrum labeling. Australia ▌Broad Spectrum: Similar to US, requires UVA protection to be at least 1/3 of the labeled SPF like in Europe Measurement methods ▌In vivo PPD Test: Measures skin darkening after UVA exposure. ▌Critical Wavelength: Determines the wavelength below which 90% of UV absorption occurs. ▌In vitro PMMA Plate Method: Used for measuring UVAPF-to-SPF ratio in Europe. HOW SUN-FILTERS WORK UVA FILTER ▌absorption maximum between 320 and 400 nm UVB FILTER ▌absorption maximum between 290 and 320 nm BROADSPECTRUM FILTER ▌absorption throughout the UV spectrum from 290 to 400 nm MINERAL VS CHEMICAL The terms "mineral" and "chemical" filters in sunscreens are often considered inaccurate because they do not accurately reflect the chemical nature of the ingredients used. Instead, the terms "organic" and "inorganic" are more precise: Why the terms matter 1. Chemical nature: The term "chemical" suggests synthetic or artificial, which can be misleading since both organic and inorganic filters involve chemical processes. "Organic" refers to carbon-containing compounds, while "inorganic" refers to mineral-based compounds without carbon. 2. Mechanism of action: The terms "physical" and "chemical" imply different mechanisms of action (reflection vs. absorption), but both types of filters can absorb UV radiation. 3. Consumer perception: Using accurate terminology helps consumers make informed choices based on their preferences for natural or synthetic ingredients and their environmental impact. CHEMICAL OR ORGANIC FILTERS ▌Composition: These are carbon-based compounds designed to absorb UV radiation. They include aromatic compounds with carbonyl groups, such as cinnamates and benzophenones. ▌Mechanism: Organic filters absorb UV radiation and undergo a reaction, releasing the absorbed energy as heat or light of a lower-energy longer wavelength such as infrared radiation (i.e., heat). ▌Examples: Avobenzone, octocrylene, and oxybenzone and ecamsule are common organic filters. ▌Stability: Most newer organic filters are photostable, meaning they don´t stop working after absorbing too much UV light. However, avobenzone and octinoxate are photo-unstable and are therefore often combined with other filters. Butyl Methoxydibenzoylmethane, (avobenzone), provides excellent protection across the entire UVA range, including UVA1 (340-400 nm) and UVA2 (320-340 nm). This makes it the global gold standard for UVA protection. ▌Advantages: Chemical filters have a high “staying power”, meaning they don´t clump and stay in an even layer on the skin, often have lighter pleasant textures and offer high UVA protection. ▌Act to block ultraviolet radiation, which is light with wavelengths shorter than visible light ▌UVA1 (300-400) also called long UVA ▌UVA2 (315-340) ▌UVB (290-315) radiation ▌UVC (100-290) nm - not relevant .PHYSICAL OR INORGANIC FILTERS ▌Composition: These are mineral-based compounds, typically metal oxides like titanium dioxide (TiO2) and zinc oxide (ZnO). ▌Mechanism: Inorganic filters primarily reflect and scatter (actually also into the skin) UV radiation but can also absorb it due to their semiconducting properties. Act to block ultraviolet radiation which is light with wavelengths shorter than visible light. ▌Advantages: They offer broad-spectrum protection, are photostable, less likely to cause irritation. ▌Disadvantages: might leave a white cast, are sometimes cosmetically less elegant (greasy and thick) or less suitable for darker phototypes, and tend to clump together on your skin, even though you might not notice this. You need quite a large amount of zinc oxide to absorb a relatively small amount of UV and the risk is rather high that you don´t use enough. ▌Dermatologists in the US were recommending mineral sunscreens, because in the US the sunfilters approved by the FDA are restricted and to reach the UVA1 protection level, had to contain either avobenzone as organic filter or zinc oxide as inorganic filter. Although zinc oxide has lower UVA-PF, it was considered to have less irritation potential and was therefore preferred. Note: Avobenzone is an excellent filter found in sunscreens suitable and tested on sensitive skin, however it is always recommended to ask for a sample and try before you buy. ▌Experimental studies have shown that when particle sizes are very small, as in micronized sunscreens, the mechanism of action is similar to that of chemical filters. Some say that only 5-10% of the mode of action is “reflection and scattering” and the rest is comparable to chemical filters. WATERRESISTANT – WATERPROOF - SWEATPROOF In Europe and other regions, the terms "water-resistant," "waterproof," and "sweatproof" on sunscreen labels have specific meanings and regulations. The ISO standard for measuring water resistance in sunscreens is ISO 16217. This standard outlines the procedure for evaluating water resistance by comparing the Sun Protection Factor (SPF) before and after water immersion. According to the guidelines: 1. A sunscreen can be labeled as "water-resistant" if it retains at least 50% of its SPF value after 40 minutes (2 x 20 minutes) of water immersion compared to the initial SPF value before immersion. 2. For "very water-resistant" claims, the product must maintain its effectiveness after 80 minutes (4 x 20 minutes) of water immersion. ▌Measurement method: The sunscreen is applied to the skin and immersed in water according to a strict ISO-protocol for the claimed duration. Afterwards, the SPF is measured to ensure it remains effective. ▌Disadvantages: ▌Variability: Differences in application thickness and skin type can affect results. ▌Environmental factors: Chlorine, saltwater, and physical activity can impact sunscreen effectiveness, hence the testing method does not reflect real world. While there are regional differences in how water resistance is labeled and regulated, no sunscreen can be truly waterproof or sweatproof. Consumers should look for "water-resistant" labels and reapply sunscreen regularly (every 2 hours) and preferably after swimming, sweating or toweling to maintain protection. Europe Water-resistant ▌Regulations: European regulations do not allow claims of "waterproof" or "sweatproof" due to the potential for misleading consumers. United States Water-resistant ▌Definition: Similar to Europe, U.S. regulations allow sunscreens to be labeled as "water-resistant" for either 40 or 80 minutes. ▌Regulations: The FDA prohibits the use of "waterproof" and "sweatproof" on labels since 2011, requiring clear indications of how long the product remains effective in wet conditions. Australia Water-resistant ▌Definition: Australian regulations are strict, allowing water-resistant claims only if the sunscreen maintains its SPF after immersion in water for up to 4 hours. ▌Measurement method: Similar testing methods are used as in Europe and the U.S., with rigorous standards set by the Therapeutic Goods Administration (TGA). SAFETY CONCERNS & MYTHS Nanoparticles: Zinc oxide and titanium must be ground into tiny particles to avoid forming a “white cast”. This can be either micro-particles (100-250o nm) or even smaller than 100 nm (nanoparticles). Even these smallest particles don´t penetrate beyond the stratum corneum and are considered safe. They might penetrate deeper and cause reactions when applied on damaged skin, for example just after an aesthetic procedure like peeling, fractional laser etc. Endocrine disruption: Claims about hormone disruption are largely based on animal studies with unrealistically high doses. Human studies have not shown significant risks, which was confirmed after careful re-evaluation by regulatory bodies. The only filter to avoid is 4-Methylbenzylidene Camphor, also known as 4-MBC or Enzacamene, is a chemical sunscreen agent used primarily as a UVB filter. 4-MBC has been banned in the European Union due to concerns about its safety or lacking proper safety data. Systemic absorption: While some sunscreen ingredients can be absorbed into the bloodstream, the levels are considered too low to cause harm. Larger companies and probably some smaller ones too, have serious safety departments who will make toxicology calculations taking lifetime exposure of the ingredient(s) and formula into consideration. They are in constant exchange with regulatory bodies and both exist to keep you safe. There is zero tolerance for systemic or side effect of skincare or sunscreens. Free radical formation: Some filters in sunscreens react with UV and form free radicals, thus cause oxidative stress. Intelligent sunscreen formulations contain anti-oxidants to neutralize free radicals from UV, Blue Light and potentially UV-filters. My personal favorite is Licochalcone A, because it it is the most potent anti-oxidant to neutralize free radical activity from both UV and High Energy Visible Light. Moreover, it can work as both first line defence (extracellular) and second line defense (intracellular), backed up by science. DIY sunscreens: Crafting sunscreens at home can lead to uneven distribution of the filters if ingredients are not well mixed, too low concentrations of filters and thus inadequate protection. Serious sunscreen brands put their products through a long development process including SPF, UVA, microbiology, stability, safety and tolerability testing, product in use studies with hundreds of volunteers and clinical studies under supervision of a dermatologist. The potential skin damage from insufficient SPF far outweighs any cost savings, for both aesthetic and health reasons. Sunscreens cause skin cancer: They don´t and there is ample scientific evidence to support this. I do want to re-emphasise to apply sunscreen in the recommended amount and ensure adequate coverage to be well protected. Reapply every 2 hours, especially after swimming, perspiring or towelling. Sunlight is inherently healthy: While some sun exposure is absolutely beneficial, excessive exposure is a known carcinogen and will make your skin age faster or cause hyperpigmentation. Do I need to remind you of famous pictures of a woman with leather-like looking very tanned wrinkled skin and the truck driver with severe solar elastosis on the side of his face exposed to sunlight? Sun is fun, however please be safe. Read more. I must apply sunscreen every day: In case of skin cancer prevention I would consider Australia a reliable benchmark. The Cancer Council Australia and the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) recommend using sunscreen on days when the UV Index forecast is 3 or higher. However, if you want to be safe and significantly decrease the risk of skin cancer, prevent premature aging and/or hyperpigmentation, daily use of sunscreen in face (or other unexposed areas) is highly recommended even with a lower UV Index, especially when using medication, skincare or undergo treatments making your skin more prone to sun-damage. Too much or too often is almost not possible when it comes to sunscreen use. TikTok trends and celebrity recommendations: Use common sense and what works well for them, might not work for you. "Scary sunscreen stories" seem to go viral at the moment and I wish the same people with huge following like Dr. Andrew David Huberman (associate professor of neurobiology and ophthalmology at Stanford University School of Medicine), or Gary Brecka (human biologist and biohacker) would instead of creating and spreading sunscreen myths focus on proper evidence based education on sunscreen use and skin cancer prevention. Ocean safe and sustainable formulas/products: The term "reef-safe" has become a buzzword in the sunscreen industry. Ocean or reef safe formula´s are usually formulated without microplastics (UNEP definition), with biodegradable polymers and improved filter-systems complying with regulations like the ones in Hawaii and Palau, are more sustainable formula´s in preferably in ditto packaging. Sustainability is extremely complicated, involving the whole supply-chain from ingredient sourcing, production, packaging (primary and secondary), transportation to recyclability and even marketing materials. I consider every step towards preserving our marine life and environment in general a significant one. TIPS 1. Select the right sunscreen: It's crucial to choose a sunscreen that suits your skin type, purpose and one you enjoy using. Opt for a higher SPF than you think you need, as you often apply less than the recommended amount to reach the labelled SPF on the product. The findings of this study suggest that at the start of the workday proper application of 2 mg/cm2 of SPF50+ (which is 60 or higher) sunscreen will degrade to an SPF level of less than 30 at 4 hours after application. Read more Take this into consideration when buying your sunscreen, you don’t reapply before your lunch break and go outside in the sun for a walk. Big disclaimer is that matters might be worse than reflected, as in some areas your sunscreen will have worn off completely and coverage is important for protection. A useful tip is to apply sunscreen twice; studies show that double application helps achieve the labeled SPF more reliably. Of course you can double up with a daycare containing SPF and a sunscreen. 2. Apply sunscreen properly: The most important of all tips. Take the time to apply sunscreen thoroughly about 15-20 minutes prior to going outside. Coverage and even distribution of the correct amount are key. The majority of sunscreens can be used after your daily moisturiser or serum and before (gently applied) make-up. Not all ingredients might go well together. Tinted products containing iron oxides offer additional protection against UV and High Energy Visible Light, however make-up with SFP is not sufficient as you will probably not apply enough of it to reach the listed SPF without looking cakey. 3. Be aware of Blue Light: Although not mentioned in this post, blue light from sunlight can harm your skin. It's important to be informed about its effects, particularly darker phototypes. Read more. 4. Rethink tanning: There is no such thing as a healthy tan (except maybe a spray tan). A tan indicates skin damage. It's essential to recognize this and take protective measures. Read more. 5. Consider DNA damage: DNA damage from UV exposure is serious, though the skin can repair itself to an extent, there are ways to prevent damage (sunscreen) and support this repair process. Read more. 6. Prioritise SPF: Using (expensive) rejuvenating serums or creams is futile without daily sunscreen protection. Sunscreen is the foundation of any effective skincare routine. Moisturisers with a high SPF will offer the same UV protection as sunscreen, because SPF is regulated. The same amount as sunscreen is recommended to be applied and reapplied: 2mg per cm2. Calculate about 1 gram for face, 1 gram for the neck, 1 gram for décolletage, 1 gram for the back of 1 hand, 2 grams for your scalp and 2 grams per forearm. The precise amount depends on your skin surface. 7. Eye safety: Some filters may cause irritation when they migrate into the eye area. This is very annoying. You can avoid migration of the product by applying a little bit of translucent powder, a trick used by make-up artists to “set” foundation and concealer, however this works well for sunscreen too. Wear sunglasses for extra protection of the delicate eye area. Although some might recommend the use of mineral filters in the eye area, I am hesitant to make such a recommendation as mineral filters are more prone to migrate and clump than chemical filters. 8. Shiny greasy skin: Some sunscreens might make your skin look greasy or shiny. Moreover, skin´s sebum production is increased during daytime: circadian rhythms. There are special sunscreens for oily skin types with mattifying pigments and even sebum regulating technology. For example L-Carnitine has shown to reduce sebum production by 48%. Careful blotting, the use of a translucent or even better a powder with iron oxide containing colour pigments also help to mattify. Always consult a qualified healthcare professional to determine what the most suitable approach is for your skin health and beauty. Sun is fun! Take care. Anne-Marie Reference [1] van Bodegraven et. al. Redefine photoprotection: Sun protection beyond sunburn. Experimental Dermatology, 2024
While factors like genetics and lifestyle (including sun exposure) play significant roles in skin ageing, the role of the lymphatic system in skin ageing is an overlooked however interesting strategy to improve skin's youthful functional (health) and physical attributes (beauty).
The lymphatic system, a vital part of the immune system, is responsible for draining excess fluid, toxins, and waste products from tissues. In the skin, lymphatic vessels collect waste and transport it to lymph nodes for filtration. The lymphatic vessels work with tiny, reflexive muscular contractions constantly pumping cleansing (toxins and debris) lymph fluid through their channels. Interestingly it explains why injections with the muscle relaxant botulinum toxin can cause oedema. The function of the lymphatic system
As we age the lymphatic function and density is decreasing 1:
Effects of lymphatic system decline on skin:
Rejuvenating the lymphatic system for youthful sculpted skin:
Wrongful injected fillers in the tear trough or malar (eye socket - cheek area) septum can lead to worsening of malar oedema (fluid retention) or malar bags. Always consult a qualified healthcare professional or dermatologist to determine the most suitable approach for your particular skin condition and rejuvenation goals. Take care! Anne-Marie References: 1. Structural and Functional Changes in Aged Skin Lymphatic Vessels R. Kataru et al. Front. Aging, 2022 2. Reduction of lymphatic vessels in photodamaged human skin Kentaro Kajiya, Rainer Kunstfeld, Michael Detmar, Jin Ho Chung J Dermatol Sci. 2007 3. Patent Cosmetic preparations comprising natural activators 4. Patent Cosmetic preparations comprising daphne extracts
If you've scrolled through Instagram, you may have caught a glimpse of dermatologists raving about LED masks emitting red light, the secret, evidenced based weapon behind skin rejuvenation known as photo biomodulation. It uses low-powered light within the red to near-infrared range (wavelengths from 632 to 1064 nm) to induce a biological reaction aka stimulate cellular processes. The wonders of red light, also known as LLLT (low-level laser therapy), PBM (red light photo-biomodulation), or PBMT (photo-biomodulating therapy), extend far beyond non-invasive skin rejuvenation. I am not a fan of devices for home use, mostly because of lacking safety and/or efficacy, PBM definitely earned it's prominent spot in my skincare routine.
A summary of the benefts of red light with and without near infrared light for skin Numerous studies have demonstrated the effectiveness of red and infrared light therapy for skin rejuvenation. A combination of red light and near IR light has proven to stimulate the production of collagen (I & III) plus elastin production (Li WH et al Int J Cosmet Sci 2021), enhance mitochondrial ATP production, cell signaling, growth factor synthesis, rebalance ROS (reactive oxidative species) and reduce inflammation. Stem cells can be activated allowing tissue repair and healing. Wrinkle and scar reduction was observed and it can reduce UV damage both as treatment and prophylactic measure. In pigmentary disorders such as vitiligo, it can increase pigmentation by melanocyte proliferation and reduce depigmentation by inhibiting autoimmunity (Pinar Avci et al. Semin Cutan Med Surg. 2013 & Mitchell J Winkie et al. Review Photodermatol Photoimmunol Photomed A focused review of visible light therapies for vitiligo 2024). It has the potential to activate both keratinocytes (epidermis) and fibroblasts (epidermal junction and dermis). With consistent use, you can expect a reduction of lines and wrinkles, improvement of skin tone and texture. PBMT (when done effective and safe) will compliment both your skin rejuvenating and regenerating at home skincare regimen and in-office procedures or even post-surgical skin recovery. ATP ATP (adenosine triphosphate) is the primary source of energy for cellular processes and plays a crucial role in various biological functions. When red light with specific wavelengths (630 nm to 638 nm and 810 nm) is absorbed by the skin cells, it stimulates the mitochondria, which are the powerhouses of the cells responsible for ATP synthesis. This increase in ATP production is providing cells with more energy to carry out their functions effectively and has several beneficial effects on the skin like boosting cellular metabolism, promoting more efficient nutrient uptake and waste removal. The increased ATP levels facilitate collagen synthesis by fibroblasts, a vital component for skin structure, elasticity and firmness and reduction of lines and wrinkles.. ATP aids in the repair and regeneration of damaged skin cells. It accelerates the healing process, making it beneficial for wound healing, post-surgical recovery, and addressing skin issues such as acne scars. ROS (Reactive Oxidative Species) By modulating ROS levels, red light therapy helps reduce oxidative stress and its detrimental effects on the skin. ROS are highly reactive molecules that are naturally produced by cells as byproducts of metabolic processes. While low levels of ROS play important roles in cellular signaling and immune responses, excessive ROS can lead to oxidative stress and damage to cells and tissues. Restoring the balance of ROS result in improved skin health, reduced inflammation, and enhanced skin rejuvenation. Red light therapy has been shown to modulate reactive oxidative species (ROS) levels in the skin by promoting antioxidant defense mechanisms and reducing oxidative stress:
The difference between LLLT and PBM LLLT refers specifically to the use of lasers, which produce coherent, focussed and an intense beam of monochromatic light, while PBM has a broader range of light sources, may include laser as well as light-emitting diodes (LEDs) and other non-laser devices. LEDs are often used in PBM because they are cost effective, versatile and have the ability to cover large treatment areas. LLT uses higher power densities with more energy and has a shorter treatment duration in comparison to PBM to achieve desired therapeutic effects. While there are similarities in terms of mode of action", there is a difference of light source, treatment application and parameters. Based on consensus, PBM and PBMT are considered the correct way to describe this photonic specialty for therapeutic applications. In this post I will focus on PBM and specifically LEDs. A home device claiming to use cold near infrared laser light or Low-Level Laser Therapy is called LYMA laser. It is sold for several thousand euro´s. LED masks and LED panels LED masks specifically produced by the brand Omnilux (FDA cleared) are currently very popular for very good reasons; they are safe and effective when the LEDs emit the right wavelengths and used in the recommended frequency. Omnilux combines 2 therapeutically effective and complimentary wavelengths: 633nm and near-infrared 830 nm. Both wavelengths (more precise 630nm + 850nm) I would recommend to minimally look for in any red LED device, which will disqualify most LED masks and panels in the market! I've include some (not affiliated) links to devices below. Both masks and panels can be effective, however most panels are stronger in comparison to masks 60 mW/cm² vs mW/cm²), hence have the benefit of a shorter treatment time to get a similar result. Intensity and power of red light therapy devices are typically measured in terms of irradiance (measured in milliwatts per square centimeter, mW/cm²) and radiant flux (measured in watts, W), which quantify the amount of light energy emitted by the device. Wearing a mask during a hot summer or in a warmer climate will make you sweat and depending on the materials of the mask and straps, they may be very uncomfortable to wear. Panels have the benefit that they give a more even distribution of emitted light as masks are worn on the face and thus the LED bulbs are pushed on a small skin surface area, panels can cover a larger area (depending on their size) and are more versatile in use, as area's like neck, décolletage, or knees are easier to treat with a panel. With a mask you may be more mobile, although I would not recommend walking around while using the mask. My personal preference would be a panel for the reasons mentioned before and panels are more suitable (more hygienic) for family sharing. My son can use it after an intense workout to speed up his recovery and I like to use it for purposes beyond photo-biomodulation or skin rejuvenation, for example to improve my sleep. With a panel I get more "bang for my buck".
Red light and NIR (Near Infra Red light) have the ability to penetrate varying depths of the skin, resulting in distinct benefits, thus combinations of wavelengths will provide complementary effects.
630 nm Wavelength This wavelength is often used for its skin rejuvenation benefits. It has a relatively shallow penetration depth and is absorbed closer to the surface of the skin primarily affecting the epidermis. 630nm light is associated with increased circulation, reduce inflammation, improved skin tone & texture, aiding in the delivery of nutrients and oxygen to skin cells, and stimulating the production of collagen, leading to improved skin elasticity and a reduction of the appearance of fine lines & wrinkles. 660 nm Wavelength At 660nm, red light can penetrate a little deeper into the skin, reaching the dermis. It is known for its ability to stimulate collagen production, enhance cellular metabolism, and promote anti-inflammatory effects, helping to reduce redness and inflammageing. It also promotes wound healing, making it beneficial for post-surgical or post-trauma skin recovery. 810 nm Wavelength Improve healing & recovery & accelerate wound healing. 830 nm Wavelength Accelerate healing, reduce infection, improve aesthetic outcome following plastic surgery, increase endorfines (mood-enhancing), improve bone repair and growth. 850 nm Wavelength Improve general inflammation body, enhance muscle recovery, improve wound healing, reduced fine lines, wrinkles and hyperpigmentation. Always consult a qualified healthcare professional or dermatologist to determine if and what the most suitable red light therapy approach is for your particular skin condition and rejuvenation goals. Take care! References: Hamblin, Michael R. "Mechanisms and applications of the anti-inflammatory effects of photobiomodulation." AIMS biophysics 4.3 (2017): 337-361. Barolet, Daniel. Regulation of Skin Collagen Metabolism In Vitro Using a Pulsed 660 nm LED Light Source: Clinical Correlation with a Single-Blinded August 2009Journal of Investigative Dermatology 129(12):2751-9 Wunsch A, Matuschka K. (2014). A controlled trial to determine the efficacy of red and near-infrared light treatment in patient satisfaction, reduction of fine lines, wrinkles, skin roughness, and intradermal collagen density increase. Journal of Cosmetic and Laser Therapy, 16(5), 232-237. Avci P, et al. (2013). Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Seminars in Cutaneous Medicine and Surgery, 32(1), 41-52. Links to some devices which combine 630 nm and 850 nm: FDA-approved devices ensure safety and regulatory compliance, however the panels are more powerful: Omnilux(tm) Mask (FDA clearance) Very affordable panel (no FDA clearance) Affordable panel (no FDA clearance)
Skin ageing is a biological degenerative process, marked by loss. The number of patients seeking nonsurgical rejuvenation of the face and the body is continuing to increase due to a growing ageing population concerned with physical appearance. Women wish to maintain a youthful appearance and attractiveness represent 92% of all cosmetic procedures.(1) Men are keen to maintain physical characteristics associated with virility.(2) Millennials are also increasingly concerned with preserving their beauty and youth.(3) Among the various treatment approaches, different minimally invasive techniques have been developed and dermal fillers currently come second after botulinum toxin type A (BTA).(3) Their use is increasing worldwide.
"The fear of looking done is the number 1 reason why patients don't seek treatment"* The range of fillers available for soft-tissue augmentation is constantly expanding. The latest advances in filler technology include bio-stimulators that exert their aesthetic effect by promoting predominantly collagenesis or biological stimulation of new collagen and sometimes also elastin production. Therewith they provide a biological answer to the skin ageing degeneration process, with gradual and often very natural results. Over the course of last years the knowledge on injectable bio-stimulators has grown, and therewith their safety and popularity as they provide subtle longer lasting results. Facial fillers can be broken into 3 main groups:
Bio-stimulating fillers promote the body’s natural production of some ECM components (mostly collagen) over a period of several months. Their differences are characterized by their property of inducing natural collagen production. SYNTHETIC BIOSTIMULATORS
Calcium Hydroxylapatite Calcium hydroxylapatite: Calcium hydroxylapatite is a type of mineral that is commonly found in human teeth and bones and in injectbales the calcium hydroxylapatite particles are suspended in a gel-like solution. The effects of this material last approximately 18 months with minimal inflammatory response. Radiesse is a biodegradable filler consisting of 30% synthetic CaHA microspheres (diameter of 25-45μm) suspended in a 70% aqueous carboxymethylcellulose gel carrier. The soluble carrier gel evenly distributes the Radiesse CaHA microspheres providing 1:1 correction and gradually dissipates leaving the microspheres at the injection site where they induce collagenesis (collagen type I and mostly collagen type III) by fibroblast activation. Animal studies have shown that this new collagen growth occurs as early as four weeks post-injection and continues for at least 12 months with an average duration of effect of 12 to 18 months, though some results have been noted 24 months post-injection. Radiesse provides both immediate (replacement volume) and long-lasting (collagen biostimulation) volume enhancement. (5) Poly-L-lactic acid PLLA is a biodegradable, bioresorbable biocompatible man-made polymer. This material has wide uses in absorbable stitches and bone screws. The effects of PLLA generally become increasingly apparent over time (over a period of several weeks) and its effects may last up to 2 years. There is an inflammatory response. PLLA is an alpha hydroxy acid polymer of the lactic acid L-enantiomeric structure that has been safely used in many applications and in medicine for more than 30 years. Its use has expanded worldwide, associated with good long-term aesthetic results thanks to its biostimulatory-collagen effect. PLLA-based fillers are supplied as a lyophilized powder to be reconstituted with sterile water. The collagen stimulatory properties were evidenced in human in subjects (n=14) who received PLLA injections (3 sessions, spaced 4 weeks apart) at the postauricular level by collagen histochemical determination on biopsies taken at different times. Increase of collagen type-I was shown at 3 and 6 months. This study opened the new class of collagen stimulators. The long duration of action was demonstrated in a first pivotal study comparing PLLA versus collagen (116/117 subjects, respectively); the long-term safety/efficacy was shown up to 25 months. The rationale for several sessions was first documented in a dedicated article; this modality allows the effect through collagen stimulation, a biological process to occur and avoids overcorrection. PLLA fillers are among the most clinically documented products. (6) Polymers, polycaprolactone The PCL-based collagen stimulator is composed of PCL microspheres suspended in a carboxymethyl-cellulose gel carrier providing immediate and sustained volumizing effects when injected; the morphology, the biocompatibility of the PCL microspheres embedded with the collagen fibers produced all contribute to the creation of a unique 3D scaffold for a sustained effect. Its safety has been investigated in clinical studies and vigilance surveys. It presents the advantage of a slower degradation than polylactic acid (PLLA) or polyglycolic acid (PGA), which both belong to the same chemical family. Both the S and M products induced collagen production. In animal, the M product induced collagen type-III and type-I at early stage (measure at 9 months), and later predominantly collagen type-I, that deposits around the PCL microspheres (measure at 21 months). Many fibroblasts were found near the PCL microspheres. Interestingly, new elastin fibers were also formed, and neovascularization with new capillaries observed as well. (7) NATURAL BIOSTIMULATORS 1. Platelet rich plasma 2. Platelet rich fibrin 3. Polynucleotides like Nucleofill or Nucleadyn 4. Exosomes 5. Alginate 6. Tropoelastin (precursor of elastin molecule) 7. Poly-y-glutamic acid Platelet-Rich Plasma (PRP): PRP treatments are produced by spinning a small volume of the patient’s own blood through a centrifuge. This separates and concentrates the blood’s components, including platelet-rich plasma and the “buffy coat,” a solution that contains immune cells. The provider combines these two components with a small amount of calcium chloride (which activates and keeps the PRP stable), then injects them into the treatment area. Over a period of months, PRP stimulates the body’s natural collagen production. Platelet-Rich Fibrin (PRF): PRF is produced using a process similar to PRP concentration. The active material is a fibrin matrix rich in platelets, stem cells, and immune cells. Like PRP, PRF treatment stimulates collagen production and is also implicated in tissue regeneration, though there’s less data on the durability of its effects. Because both treatments use material from the patient’s own body, so there’s no risk of rejection or similar complications. PRF and PRP effects are durable — typically lasting longer than 18 months. Polynucleotides: Polynucleotides are most often natural, highly purified DNA molecules extracted for example from trout gonads and activate specialised cells called myofibroblasts and adipocytes. PN containing devices act as short time temporary fillers thanks to the viscoelasticity of the long DNA fragments and improve skin well‐being (cell growth) and steady self‐repair (tissue regeneration). Read more Exosomes: The use of exosomes at the Aesthetic & Anti-Aging Medicine World Congress in Monaco was discussed during many session and some excellent results were presented. However their use is not yet approved and safety and long-term effect not yet established and largely depends on the source. Read more BOTULINUM TOXIN There is evidence that the neuromodulator or musclerelaxer Botinumtoxin after injection upregulated the expression of type I collagen, decreases the production of some MMPs in fibroblasts, preventing collagen degradation and improves collagen organisation. (8.9.) ENERGY BASED DEVICES Intense Pulsed Light/BroadBand Light, Radiofrequency Microneedling, lasers, High-Frequency Ultrasound, Electromagnetic Tec. stimulate collagen production via a controlled damage and repair mechanism. DERMO-COSMETICS WITH BIO-ACTIVES There are innovative dermo-cosmetic products containing bio-stimulating ingredients, working more superficial in comparison to in-office treatments and they therefor are potentially an excellent choice as adjunctive care for biological rejuvenation and revitalization for younger looking and acting skin. They are safe to use easy to apply over face, neck and décolletage. Unlike in-office treatments their effects are temporary (fully reversible as regulated), hence they require daily or twice daily application. Biostimulating active ingredients in skincare which have shown to particularly stimulate the fibroblast are for example:
VITAMIN C IS NEEDED FOR COLLAGEN SYNTHESES! Our skin needs Vitamin C to produce collagen and is not able to produce it, thus relies on external resources for supply. Therefore I highly recommend to either get enough Vitamin C from your diet or use a high quality topical product pre & post biostimulators. Read more BIOSTIMULATION FAT CELLS Renuva is an allograft adipose matrix injectable that offers a non-surgical solution for volume restoration in various areas of the body, including the face, hands, and areas with contour irregularities. It stimulates the growth of own fat cells, potentially providing longer-lasting results. Renuva is FDA-regulated. In skincare the ingredient Magnolol or Magnolia Bark Extract has shown to increase the number and size of adipocites or fat cells to counteract volume-loss. As the biological degeneration takes place in different layers of the skin and it's underlying structures, combining in-office treatments specifically targeting those layers in a series of treatments may provide longer lasting results and give higher patient satisfaction.(13) Safety and outcome rely on the qualification and experience of your cosmetic doctor, dermatologist or plastic surgeon. Take care Special thanks MD FAAD Hassan Galadari Jair Mauricio Cerón Bohórquez M.D. References: 1. American Society Plastic Surgeons. 2020 national plastic surgery statistics; 2020. 2. Wat H, Wu DC, Goldman MP. Noninvasive body contouring: a male perspective. Dermatol Clin. 2018;36(1):49–55. 3. Wang JV, Akintilo L, Geronemus RG. Growth of cosmetic procedures in millennials: a 4.5-year clinical review. J Cosmet Dermatol. 2020;19(12):3210–3212. 4. Evaluation of the biostimulatory effects and the level of neocollagenesis of dermal fillers: a review. Haddad S, Galadari H, Patil A, Goldust M, Al Salam S, Guida S International Journal of Dermatology, 29 Apr 2022 5. J Clin Aesthet Dermatol. 2015 Jan; 8(1): 38–49. Calcium Hydroxylapatite Over a Decade of Clinical Experience Jani Van Loghem, MD, Yana Alexandrovna Yutskovskaya, MD,b and WM. Philip Werschler, MDc 6. Clin Cosmet Investig Dermatol. 2022; 15: 997–1019. Collagen Stimulators in Body Applications: A Review Focused on Poly-L-Lactic Acid (PLLA) Marie-Odile Christen Read more 7. Clin Cosmet Investig Dermatol. 2020; 13: 31–48. Polycaprolactone: How a Well-Known and Futuristic Polymer Has Become an Innovative Collagen-Stimulator in Esthetics Marie-Odile Christen and Franco Vercesi 8. Oh SH, Lee Y, Seo YJ, Lee JH, Yang JD, Chung HY, Cho BC. The potential effect of botulinum toxin type A on human dermal fibroblasts: an in vitro study. Dermatol Surg. 2012 Oct;38(10):1689-94. 9. El-Domyati M, Attia SK, El-Sawy AE, Moftah NH, Nasif GA, Medhat W, Marwan B. The use of Botulinum toxin-a injection for facial wrinkles: a histological and immunohistochemical evaluation. J Cosmet Dermatol. 2015 Jun;14(2):140-4 10 EADV 2022 Inhibition of extracellular matrix degrading enzymes and bio-stimulation of fibroblasts – A novel approach to mitigate the advanced degenerative process in skin aging Weise J, Vogelsang A, Sperling G, Welge V, Nölter A, Mielke H, Knott A, Harbig S, Stuhr A, Dunckel J, Warnke K, Geloven van A 11. EADV 2021 Multifaceted novel approach to increase skin’s own epidermal and dermal hyaluron content Bussmann T, Warnke K, Krüger A, Möller N, Harbig S, Stuhr A, Dunckel J, Geloven van A, Weise J | Beiersdorf AG, Hamburg, Germany 12. Photochemistry and Photobiology, 2005, 81: 581–587 Novel Aspects of Intrinsic and Extrinsic Aging of Human Skin: Beneficial Effects of Soy Extract Kirstin M. Su¨del et al 13. Combination Therapy in Midfacial Rejuvenation Humphrey et al. Dermatologic Surgery 42:p S83-S88, May 2016. *AMWC 2023 Tapan Patel
It was always believed that the moment we are born, is the moment we are exposed to environmental influences. The truth is that there is ample evidence that already during pregnancy the mothers behaviour: smoking or food has a significant impact on how well we age. We know that all skin needs to be protected against UV and HEVIS by using sunscreen, especially in sun exposed areas from birth onwards.
Although you can not start too early taking care of your skin, the right age to start with a well-ageing skin care routine is actually just post-adolescence for 3 reasons. 1. During adolescence most start with their first cleansing and care routines to remove access of sebum, debris and reduce plus prevent break-outs or comedones. Boys may already shave facial hair. So teenagers or young adults are used to a morning- and evening skin care routine which benefits the overall sense of well-being. 2. Most commonly growth stops when puberty ends and this is the moment the degenerative biological process starts, even though there are no visible signs yet. 3. Prevention of pre-mature ageing skin is the most effective and efficient strategy. SKIN NEEDS CARE There is a movement stating that normal unproblematic skin doesn't need care. I strongly disagree. The choice of products at this age depends of course on the skin type, skin condition, skin health, and environment (like weather conditions, pollution), however the morning care should always focus on protecting every skin type, using suncreen (UV + HEVIS protection) and ideally complimented by anti-oxidants to reduce damaging free radical activity, while the evening routine should at least include proper cleansing (to remove dirt and pollutants), which may be followed by product catering to specific needs, like for example sebum regulating, barrier repairing or hydrating ingredients. I would not make a differentiation between darker or lighter skin in terms of photoprotection, as dark skin only has a natural SPF of 13.3 and light skin of 3.4, hence both not enough to prevent sun damage. However, dark skin has a lower amount of ceramides in the statum corneum and is therefore more prone to trans-epidermal water loss. LAZY SKIN? If you are afraid of spoiling your skin and making it "lazy" using skin care for a long time, know that all effects from a dermo-cosmetic product are 100% reversible, thus temporary. This is regulated by law and to enjoy the benefits from skin care, you need to keep using the products. When you stop, your skin will bounce back to it's original state at least after a full regeneration cycle of about 28 days. A few things to avoid are: sun-damage, especially burns, over-exfoliation (damaged skin barrier) and slugging of oily or acne-prone skin (breakouts). Take care. |
CategoriesAll Acne Age Clocks Ageing Aquatic Wrinkles Armpits Autophagy Biostimulators Blue Light & HEVIS Circadian Rhythms Cleansing Collagen CoQ10 Cosmetic Intolerance Syndrome Deodorant Dermaplaning Diabetes DNA Damage DNA Repair Dry Skin Epigenetics Evidence Based Skin Care Exfoliation Exosomes Eyes Face Or Feet? Facial Oils Fibroblast Fingertip Units Gendered Ageism Glycation Growth Factors Gua Sha Hair Hair Removal Hallmark Of Aging Healthy Skin Heat Shock Proteins Hormesis Humidity Hyaluron Hyaluronidase Hypo-allergenic Indulging Jade Roller Keratinocytes Licochalcone A Luxury Skin Care Lymphatic Vessel Ageing Malar Oedema Menopause Mitochondrial Dysfunction Mood Boosting Skin Care Neurocosmetics Ox Inflammageing Peptides PH Balance Skin Photo Biomodulation Polynucleotides Proteasome Psoriasis Regeneration Regenerative Treatments Review Safety Scarring Sensitive Skin Skin Care Regimen Skin Flooding Skin Hydration Skin Senescence Skip-Care Sleep Slugging Sunscreen Tanning Under Eye Bags UV Index Vitamin C Vitamin D Well Ageing Skin Care Wound Healing Wrinkles
Archives
December 2024
|
Anne-Marie van Geloven © 2024 All rights reserved
|