Live your best life & take care
![]()
Mitochondria are the "powerhouses" or "lungs" of our cells and bioenergetic semi-autonomous organelles with their own genomes and genetic systems. [1] They are responsible for generating the energy that fuels a wide range of cellular processes in the skin, including cell signaling, pigmentation, wound healing, barrier integrity [2], metabolism and quality control. [3] Mitochondria exist in each cell of the body and are generally inherited exclusively from the mother. Their primary role is cellular respiration; a process converting the energy in nutrients (like glucose) into a usable form of energy called ATP or Adenosine Triphosphate. Mitochondria are particularly abundant in the skin, reflecting the skin's high metabolic demand. When the functionality of mitochondria is impaired or declines, it impacts skin's vitality, health and beauty. Mitochondrial dysfunction is 1 of the 12 hallmarks of skin ageing.
The skin is particularly susceptible to mitochondrial stress due to its constant exposure to environmental insults, such as UV radiation, pollution, and other oxidative stressors. These factors can damage mitochondrial DNA, leading to increased production of reactive oxygen species (ROS) and disrupting the delicate balance of cellular processes. [4] In aged post-mitotic cells, heavily lipofuscin-loaded lysosomes perform poorly, resulting in the enhanced accumulation of defective mitochondria, which in turn produce more reactive oxygen species causing additional damage (the mitochondrial-lysosomal axis theory). [5] Optimal mitochondrial function is indispensable for sustaining the specialized functions of each cell type, like keratinocyte differentiation, fibroblast ECM production, melanocytes melanin production and distribution, immune cell surveillance, sebocytes and adipocytes. [6] Mitochondrial dysfunction is both directly and indirectly linked to chronological ageing and photo-ageing. [7] As mitochondrial function declines, the skin's ability to regenerate and repair itself is decreased. [2] This results in visible signs of aging, such as wrinkles, loss of elasticity, dryness, uneven pigmentation, melasma, age spots, lipomas, impaired wound healing. [2-4-5-8-9] Mitochondrial dysfunction also has been implicated in skin conditions like acne, eczema, lupus, psoriasis, vitiligo, atopic dermatitis and even skin cancer. [10] Ageing is associated with changes in mitochondrial morphology, including [6] ▌Hyperfusion or increased fragmentation ▌Loss of mitochondrial connectivity [11-7] ▌Decline in the efficiency of oxidative phosphorylation, leading to reduced ATP production ▌Decline mitochondrial membrane potential (ΔΨM) ▌Compromised cellular energy metabolism ▌Reduced mitochondrial turnover (downregulated biogenesis) ▌Impaired mitochondrial quality control such as mitophagy (removal of damaged mitochondria through autophagy) [6] These alterations are related to the increased production of ROS exhibited by mitochondria during ageing, the accumulation of which causes oxidative damage to mitochondrial and cell components contributing to cellular senescence. [12] Good mitochondrial function or metabolism: [7] ▌Redox homeostasis: (the way of reducing oxidative stress) - mitochondrial respiration and ROS production are essential for keratinocyte differentiation ▌ATP production: Adenosine Triphosphate provides energy to drive and support many processes in living cells (and GTP) ▌Respiration: mitochondrial respiration is the most important generator of cellular energy ▌Biogenesis: allows cells to meet increased energy demands, to replace degraded mitochondria and is essential for the adaptation of cells to stress [6] ▌Calcium homeostasis ▌Cellular growth ▌Programmed cell death (apoptosis) reducing cell senescence [13] ▌Mitochondrial protein synthesis: mitochondria typically produce 13 proteins encoded by mitochondrial DNA (mtDNA) Dysfunctional Mitochondria: [7] ▌Oxidative stress ▌Decreased ATP levels ▌Dysfunctional OXPHOS: Oxidative phosphorylation, a metabolic pathway in which enzymes oxidize nutrients to release stored chemical energy in the form of ATP ▌Altered mitochondrial biogenesis ▌Calcium imbalance ▌Cell death Mitochondrial proteins Mitochondria contain >1,100 different proteins (MitoCoP) that often assemble into complexes and supercomplexes such as respiratory complexes and preprotein translocases. The chaperones Heat Shock Proteins HSP60-HSP10 are the most abundant mitochondrial proteins. [3] Small heat shock proteins form a chaperone system that operates in the mitochondrial intermembrane space. Depletion of small heat shock proteins leads to mitochondrial swelling and reduced respiration. [14] Mitochondrial hyperpigmentation Emerging research has shed light on the intricate relationship between mitochondrial dysfunction and the development of hyperpigmentation, a condition characterized by the overproduction and uneven distribution of melanin in the skin. One of the key mechanisms underlying this connection is the role of mitochondria in the regulation of melanogenesis, the process by which melanin is synthesized. Mitochondria are involved in the production of various cofactors and signaling molecules that are essential for the activity of tyrosinase, the rate-limiting enzyme in melanin synthesis. [15] When mitochondrial function is impaired, it can lead to an imbalance in the production and distribution of these cofactors and signaling molecules, ultimately resulting in the overproduction and uneven deposition of melanin in the skin. [15] This can manifest itself as age spots, melasma, and other forms of hyperpigmentation. The link between mitochondrial dysfunction and hyperpigmentation has been further supported by studies on genetic disorders that involve mitochondrial dysfunction, such as mitochondrial DNA depletion syndrome. In these conditions, patients often exhibit a range of pigmentary skin changes, including patchy hyper- and hypopigmentation, as well as reticular pigmentation. [16] Mitochondrial crosstalk and exosomes Mitochondria can crosstalk and move beyond cell boundaries. [17] Mitochondria-derived material might be transferred to neighboring cells in the form of cell-free mitochondria or included in extracellular vesicles [18-19]. This process supports cellular repair and contributes to vital mitochondrial functions. Besides restoring stressed cells and damaged tissues due to mitochondrial dysfunction, intercellular mitochondrial transfer also occurs under physiological and pathological conditions. [20] The transfer of active mitochondria from mesenchymal stem cells (MSCs) has been identified as a repair mechanism for rejuvenating damaged skin fibroblasts. [21] MITOCHONDRIAL SUPPORT Move According Martin Picard phD being physically active is a protective factor against almost everything health related. Exercise stimulates the production of mitochondria as more energy is required. Be hungry sometimes If there is too much supply of energy acquired via food leads to mass shrinking of mitochondria or fragmentation. Don´t over-eat, be calorie neutral and sometimes being calorie deficient is good for mitochondria. Maintain a healthy weight, preferably with a mediterranean diet containing phenolic and polyphenolic compounds (increase mitochondrial function and number) nitrate rich vegetables, soybeans and cacao beans. Mitohormesis In model organisms, lifespan can be improved by compromising mitochondrial function, which induces a hormetic response (“mitohormesis”), provided that this inhibition is partial and occurs early during development. Feel good Feeling good (positivity), especially at night, has a scientifically proven positive effect on mitochondrial health index, it is even a predictive factor. Q10 or Coenzyme Q10 (CoQ10) Q10 is part of the mitochondrial respiration chain and essential for cellular energy production. About 95% of our cellular energy is generated with support of Q10, which is produced by the human body itself. During skin ageing, both the cellular energy production and levels of Q10 are declined. Q10 is a powerful anti-oxidant [22], thus protecting cells from oxidative stress and damage and has proven to be able to "rescue" senescent cells by decreasing elevated senescent markers like p21 levels and β-Galactosidases positive cell numbers (in-vitro). Q10 is bio-active, increasing collagen type I and elastin production. [23] Q10 can be supplemented via nutrition, however also via topical application and is considered an evidence based active ingredient in skin care products. Ubiquinol (reduced form) shows higher bioavailability compared to ubiquinone (oxidized form). [23] Pyrroloquinoline quinone (PQQ) Q10 improves the energy in the mitochondria, however PQQ has shown to increase the number of mitochondria and a redox maestro. I´ve written a full post about this compound, which can be found as skincare ingredient and supplement. Read more about PQQ Glutathione Glutathione is formed in cell's cytoplasm from glutamic acid, cysteine and glycine. It is present in 2 forms: reduced (GSH) and oxidized (GSSG). Reduced GSH is an active anti-oxidant, while the presence of inactive GSSG is increased under oxidative stress. The ratio between GSH and GSSH is considered a measure of oxidative stress. Glutathione participates in redox reactions, acts as co-factor of many anti-oxidant enzymes and is the most important non-enzymatic anti-oxidant, essential for synthesis of proteins and DNA. Low Glutathione results in accelerated ageing and inflammatory skin diseases. Mitochondrial glutathione (mGSH) is the main line of defense for the maintenance of the appropriate mitochondrial redox environment to avoid or repair oxidative modifications leading to mitochondrial dysfunction and cell death. [24] Glutathione can be increased via supplementation via precursors cysteine or N-acetylcysteine (not recommended for pregnant women), a combination of Glycine and NAC (called GlyNAC) part of the popular "power of three" supplementation, or the reduced form of Glutathione itself, or increased via topical active ingredients like Licochalcone A. [25] I´ve written about GlyNAC in my post on autophagy. Nicotinamide NR nicotinamide ribosome which is the precursor of NMN nicotinamide mononucleotide which is the precursor of NAD+ nicotinamide adenine dinucleotide all could have a protective effect on mitochondria. Nicotinamide adenine dinucleotide is present in living organisms as ions NAD+ and NADP+ and in reduced forms NADH and NADPH. NADH is a cofactor of processes inside mitochondria: ▌ATP production ▌Activation of "youth proteins" sirtuins ▌Activation of PARP Poly (ADP-ribose) polymerase, a family of proteins involved in many cellular processes such as DNA repair, genomic stability and programmed cell death ▌Reduction of ROS (free radicals) NAD levels as lowered during ageing. [26] One of the fans of NMN supplementation is Harvard Professor David Sinclair, best known for his work on understanding why we age and how to slow its effects and also featured in my article about hormesis. There are about 14 studies done to date with NMN supplementation in humans, one of which was done by Professor Sinclair. NMN supplementation does raise NAD levels, however there aren't substantial proven health benefits, unless you are unhealthy. Resveratrol Although systemically Resveratrol promotes mitochondrial biogenesis. [27] Other data shows that UVA (14 J/cm(2)) along with resveratrol causes massive oxidative stress in mitochondria. As a consequence of oxidative stress, the mitochondrial membrane potential decreases which results in opening of the mitochondrial pores ultimately leading to apoptosis in human keratinocytes. [28] Magnesium Magnesium supplementation has been shown to improve mitochondrial function by increasing ATP production, decreasing mitochondrial ROS and calcium overload, and repolarizing mitochondrial membrane potential. There are many forms of Magnesium, however Citrate, Malate and Orotate are particularly good for energy. L-Carnitine Placebo-controlled trials have shown positive effects of L-Carnitine supplementation on both pre-frail subjects and elderly men. The effect is possibly mediated by counteracting age-related declining L-carnitine levels which may limit fatty acid oxidation by mitochondria. NEW Ergothioneine (EGT) Ergothioneine (EGT) is a sulfur-containing amino acid derivative known for its antioxidant properties, particularly in mitochondria. It is transported into cells and mitochondria via the OCTN1 transporter, where it helps reduce reactive oxygen species (ROS) and maintain cellular homeostasis [29]. EGT binds to and activates 3-mercaptopyruvate sulfurtransferase (MPST), enhancing mitochondrial respiration and exercise performance [30]. It also protects against oxidative stress and inflammation, potentially benefiting conditions like neurodegenerative diseases [31]. Melatonin Not much talked about when it comes to mitochondria, however should not be ignored as mitochondria can benefit significantly from melatonin supplementation. 1. Antioxidant protection: Melatonin acts as a powerful antioxidant within mitochondria, scavenging free radicals and reducing oxidative damage to mitochondrial DNA and proteins [32][34]. 2. Regulation of mitochondrial homeostasis: Melatonin helps maintain electron flow, efficiency of oxidative phosphorylation, ATP production, and overall bioenergetic function of mitochondria [32][34]. 3. Preservation of respiratory complex activities: Melatonin helps maintain the activities of mitochondrial respiratory complexes, which are crucial for energy production [32][34]. 4. Modulation of calcium influx: Melatonin regulates calcium influx into mitochondria, helping prevent calcium overload which can be damaging [32][34]. 5. Protection of mitochondrial permeability transition: Melatonin helps regulate the opening of the mitochondrial permeability transition pore, which is important for maintaining mitochondrial integrity [32][34]. 6. Enhancement of mitochondrial fusion: Melatonin promotes mitochondrial fusion, which is part of the quality control process for maintaining healthy mitochondria [33]. 7. Promotion of mitophagy: Melatonin enhances the removal of damaged mitochondria through mitophagy, helping maintain a healthy mitochondrial population [33]. 8. Reduction of nitric oxide generation: Melatonin decreases nitric oxide production within mitochondria, which can be damaging in excess [32][34]. 9. Selective uptake by mitochondria: Melatonin is selectively taken up by mitochondrial membranes, allowing it to exert its protective effects directly within these organelles [34]. 10. Support of mitochondrial biogenesis: Some studies suggest melatonin may promote the formation of new mitochondria [33]. The key antioxidants used by mitochondria are Glutathione (GSH), Glutathione peroxidase (GPx), Coenzyme Q10 (CoQ10), Superoxide dismutase (SOD), Melatonin, Vitamin C (ascorbate) and Vitamin E (α-tocopherol). Red light therapy By incorporating red light therapy into your skin care routine, you can help to counteract the damaging effects of mitochondrial dysfunction and support the skin's natural renewal processes. As we continue to explore the 12 hallmarks of ageing, I am confident that we will gain even more valuable insights and develop breakthrough innovations that will improve skin quality, health, beauty and vitality. Always consult a qualified healthcare professional or dermatologist to determine what the most suitable approach is for your particular skin condition and rejuvenation goals. Take care! Anne-Marie References
Comments
![]()
Pyrroloquinoline quinone (PQQ), by some called "the fourteenth vitamin", also known as methoxatin deserves a full blog post due to its health & beauty benefits. PQQ, discovered in 1979, is an aromatic tricyclic o-quinone, a small quinone molecule, naturally found in various foods (Kumazawa et al., 1995; Mitchell et al., 1999), and plays a crucial role in various biological processes, particularly in cellular energy production and antioxidant defence [1].
Chemical structure and properties PQQ is water-soluble and it´s molecular formula is C14H6N2O8 - see picture. It is structurally similar to other quinones, like for example Coenzyme Q10, however possesses unique redox (oxidation reduction) properties that contribute to its biological activities [1]. PQQ is highly stable and efficient in redox cycling, can undergo multiple redox cycles, allowing it to participate in numerous biochemical reactions with various compounds. It does not easily self-oxidize or condense into inactive forms [2]. When compared on a molar basis, PQQ can be 100 to 1000 times more efficient in redox cycling assays than other enediols, such as ascorbic acid (vitamin C) and menadione, as well as many isoflavonoids, phytoalexins and polyphenolic compounds [2]. The reduced form of PQQ (PQQH2) can act as an aroxyl radical scavenger, even more effectively than α-tocopherol against peroxyl radicals [2]. Peroxyl radicals (ROO•) are involved in lipid peroxidation and contribute oxidative stress in biological systems, potentially damaging DNA, proteins, and lipids. ![]()
PQQ is thus an exceptionally potent antioxidant: [3]
▌Direct scavenging of reactive oxygen species (ROS) ▌Regeneration of other antioxidants like vitamin E ▌Induction of antioxidant enzymes such as superoxide dismutase and catalase [4] Mitochondrial function and biogenesis One of the most significant roles of PQQ is its impact on mitochondrial function and biogenesis. Mitochondria are the powerhouses of cells, responsible for producing the majority of cellular energy in the form of ATP (adenosine triphosphate) [5]. PQQ has been show to
Anti-inflammatory effects PQQ exhibits anti-inflammatory properties, which may contribute to its potential in managing chronic inflammatory conditions: Reduction of inflammatory markers: PQQ has been shown to decrease levels of pro-inflammatory cytokines such as TNF-α and IL-6 [10] Modulation of NF-κB signaling: PQQ can inhibit the activation of NF-κB, a key transcription factor involved in inflammatory responses [11] Neuroprotection PQQ has demonstrated significant neuroprotective effects in various studies, particularly in the areas of cognitive function, protection against neurotoxins, and nerve growth factor (NGF) production.
Metabolic health ▌Glucose metabolism: Some studies suggest that PQQ can enhance insulin sensitivity and glucose tolerance. ▌Lipid metabolism: PQQ has been shown to activate AMPK (AMP-activated protein kinase), a key regulator of energy metabolism and linked to cellular increases in the NAD+/NADH ratio and increased sirtuins expression [16]. Both NAD+ and sirtuins were key topics of David Sinclair´s longevity research. Sirtuins are a family of proteins known to be involved in epigenetic regulation through their deacetylase activity. Sleep quality & quantity Sleep quality and quantity are crucial for overall health and beauty, with experts generally recommending 7-9 hours of sleep daily for adults. Recent research has shown that Pyrroloquinoline quinone (PQQ) can significantly improve sleep quality, offering a promising avenue for those struggling with sleep issues. A clinical trial involving 17 adults who took 20 mg of PQQ daily for eight weeks demonstrated notable improvements in sleep onset, maintenance, and duration. These improvements were measured using two well-established sleep assessment tools: the Oguri-Shirakawa-Azumi Sleep Inventory and the Pittsburgh Sleep Quality Index [9][17]. The study also found a correlation between these improvements and changes in the cortisol awakening response, providing biomarker-supported evidence of enhanced sleep quality. The mechanisms behind PQQ's sleep-enhancing effects are multifaceted:
PQQ is naturally present in various foods, including: ▌Fermented soybeans (natto) ▌Green peppers ▌Kiwi ▌Parsley ▌Tea ▌Papaya ▌Spinach ▌Celery [1] ▌Dark chocolate PQQ can be present in human body, even in breast milk due to diet, because only bacteria can synthesise PQQ. SKIN HEALTH AND BEAUTY Clinical Studies on PQQ in Skincare A clinical study conducted by Dr. Zoe Diana Draelos and colleagues investigated the effects of a topical formulation containing a modified form of PQQ called topical allyl pyrroloquinoline quinone (TAP) on skin aging. on 40 subjects over a 12 week period. The study findings included: ▌Improved skin texture and dullness: Significant improvements were observed in skin texture and dullness after 4 weeks of twice-daily application (both p<0.0001) ▌Reduced appearance of lines and wrinkles: The study reported improvements in the appearance of fine lines and wrinkles (p=0.01) ▌Histological improvements: Histologic evaluation demonstrated reductions in solar elastosis from baseline at 6 weeks (33%, p=0.01) and 12 weeks (60%, p=0.002). ▌Improvements were also noted in skin tone at week 4 (p=0.01). ▌Significantly increased expression of DNA methyltransferase (DNMT3A, DNMT3B), cytochrome oxidase assembly factor-10 (COX10), and tumor protein-53 (TP53) genes (all p<0.05), indicating enhanced support of epidermal homeostasis, renewal, and repair. Increasing or decreasing DNA methyltransferase is considered an epigenetic modification:
▌Increased expression of heat shock protein 60 (HSPD1) and thioredoxin reductase (TXNRD1) occurred in tissues treated with TAP versus control (p<0.05), indicating enhanced antioxidative response and adaptation. Cell senescence PQQ protected human dermal fibroblasts (HDFs) from UVA-induced senescence [22]. This is supported by the study showing that PQQ treatment reduced the percentage of senescent cells stained by X-gal following UVA irradiation compared to the UVA-only group [22]. PQQ has demonstrated significant anti-senescence properties in various studies. In a study using Bmi-1 deficient mice, which exhibit accelerated aging, PQQ supplementation was found to reduce cell senescence markers in the skin [23]. The researchers observed that PQQ intake decreased levels of matrix metalloproteinases (MMPs), which are associated with cellular senescence and tissue degradation. PQQ supplementation was shown to rescue cellular senescence parameters in articular cartilage [24]. The researchers found that PQQ inhibited the development of the senescence-associated secretory phenotype (SASP), which is characterized by increased secretion of inflammatory cytokines and contributes to tissue degeneration. DNA damage In the skin aging study (mice), PQQ supplementation was found to significantly reduce oxidative stress and DNA damage [23]. This protective effect was attributed to PQQ's ability to maintain redox balance and inhibit the DNA damage response pathway. Furthermore, in the osteoarthritis study, PQQ treatment was observed to mitigate DNA damage in chondrocytes [24]. Skin barrier & collagen PQQ has been shown to have positive effects on the skin barrier (mice). The study revealed that PQQ supplementation improved skin thickness and collagen structure, which are important components of the skin's barrier function [23]. Recommended dosage for supplementation The optimal dosage of PQQ for supplementation can vary depending on the intended use and individual factors. However, based on available research and expert recommendations: 1. General health benefits: Typical doses range from 10 to 20 mg per day [1]. 2. Cognitive function: Studies have used doses of 20 mg per day for cognitive benefits. 3. Skin health: For skin benefits, doses of 10 to 20 mg per day have been suggested, although more research is needed to establish optimal dosages for dermatological applications. It is important to consult with a healthcare provider before starting any new supplement regimen, as dosage requirements may vary based on individual health status and needs. PQQ in skincare products PQQ is an interesting bioactive ingredient to be incorporated into skincare products due to its potential benefits for skin health, beauty and regeneration. When looking for PQQ in skincare products, it may be listed under various names, including: ▌Pyrroloquinoline quinone ▌Methoxatin ▌BioPQQ (a patented form of PQQ) The efficacy and safety in skincare products depends on the concentration of PQQ, overall formulation and other ingredients in the formula. Safety and tolerability PQQ has generally been found to be safe and well-tolerated in both animal and human studies. However, as with any supplement or new skincare ingredient, there are some considerations: 1. Oral supplementation: Studies using oral PQQ supplements at doses up to 20 mg per day have reported no significant adverse effects in short-term use. 2. Topical application: The Draelos study on topical PQQ application reported that the product was highly tolerable, with no significant adverse reactions. 3. Long-term safety: While short-term studies have shown good safety profiles, more research is needed to establish the long-term safety of PQQ supplementation and topical use. 4. Potential interactions: As with any supplement, PQQ may interact with certain medications or other supplements. Individuals taking medications or with pre-existing health conditions should consult a healthcare provider before using PQQ supplements. 5. Pregnancy and breastfeeding: Due to limited research, pregnant and breastfeeding women are generally advised to avoid PQQ supplementation unless directed by a healthcare provider [1]. PQQ could be a game-changer for (skin) health and beauty. While the science looks promising, we're still in the early stages of understanding all that PQQ can do. As with any supplement or skincare ingredient, always consult a qualified healthcare professional to determine what the most suitable approach is for your health and beauty goals. Take care Anne-Marie References: [1] Harris, C. B., et al. (2013). Dietary pyrroloquinoline quinone (PQQ) alters indicators of inflammation and mitochondrial-related metabolism in human subjects. J Nutr Biochem, 24(12), 2076-2084. [2] Akagawa M, et al. Recent progress in studies on the health benefits of pyrroloquinoline quinone. Bioscience, Biotechnology, and Biochemistry. 2016;80(1):13-22 [3] Misra, H. S., et al. (2012). Pyrroloquinoline-quinone: a reactive oxygen species scavenger in bacteria. FEBS Lett, 586(22), 3825-3830. [4] Qiu, X. L., et al. (2009). Protective effects of pyrroloquinoline quinone against Abeta-induced neurotoxicity in human neuroblastoma SH-SY5Y cells. Neurosci Lett, 464(3), 165-169. [5] Chowanadisai, W., et al. (2010). Pyrroloquinoline quinone stimulates mitochondrial biogenesis through cAMP response element-binding protein phosphorylation and increased PGC-1alpha expression. J Biol Chem, 285(1), 142-152. [6] Stites, T., et al. (2006). Pyrroloquinoline quinone modulates mitochondrial quantity and function in mice. J Nutr, 136(2), 390-396. [7] Bauerly, K., et al. (2011). Altering pyrroloquinoline quinone nutritional status modulates mitochondrial, lipid, and energy metabolism in rats. PLoS One, 6(7), e21779. [8] Zhang, Y., et al. (2009). Neuroprotective effects of pyrroloquinoline quinone against rotenone injury in primary cultured midbrain neurons. Neurosci Lett, 455(3), 174-179. [9] Nakano, M., et al. Effects of oral supplementation with pyrroloquinoline quinone on stress, fatigue, and sleep. Funct Foods Health 2012 [10] Liu, Y., Jiang, Y., Zhang, M., Tang, Z., He, M., Bu, P., & Li, J. (2020). Pyrroloquinoline quinone ameliorates skeletal muscle atrophy, mitophagy and fiber type transition induced by denervation via inhibition of the inflammatory signaling pathways. Annals of Translational Medicine, 8(5), 207. [11] Wen, J., Shen, J., Zhou, Y., Zhao, X., Dai, Z., & Jin, Y. (2020). Pyrroloquinoline quinone attenuates isoproterenol hydrochloride-induced cardiac hypertrophy in AC16 cells by inhibiting the NF-κB signaling pathway. International Journal of Molecular Medicine, 45(3), 873-885. [12] Tamakoshi, M., Suzuki, T., Nishihara, E., Nakamura, S., & Ikemoto, K. (2023). Pyrroloquinoline quinone disodium salt improves brain function in both younger and older adults. Food & Function, 14(6), 3201-3211. [13] Zhang, Q., Zhang, J., Jiang, C., Qin, J., Ke, K., & Ding, F. (2014). Involvement of ERK1/2 pathway in neuroprotective effects of pyrroloquinoline quinine against rotenone-induced SH-SY5Y cell injury. Neuroscience, 270, 183-191. [14] Zhang, Q., Shen, M., Ding, M., Shen, D., & Ding, F. (2011). The neuroprotective effect of pyrroloquinoline quinone on traumatic brain injury. Journal of Neurotrauma, 28(3), 359-366. [15] Yamaguchi, K., Sasano, A., Urakami, T., Tsuji, T., & Kondo, K. (1993). Stimulation of nerve growth factor production by pyrroloquinoline quinone and its derivatives in vitro and in vivo. Bioscience, Biotechnology, and Biochemistry, 57(7), 1231-1233. [16] Mohamad Ishak NS, Ikemoto K. Pyrroloquinoline-quinone to reduce fat accumulation and ameliorate obesity progression. Front Mol Biosci. 2023 [17] Mitsugu Akagawa et al. Bioscience, Biotechnology, and Biochemistry Recent progress in studies on the health benefits of pyrroloquinoline quinone 2015 [18] Kazuto Ikemoto et al. The effects of pyrroloquinoline quinone disodium salt on brain function and physiological processes The Journal of Medical Investigation 2024 [19] Kowalczyk P, Sulejczak D, Kleczkowska P, Bukowska-Ośko I, Kucia M, Popiel M, Wietrak E, Kramkowski K, Wrzosek K, Kaczyńska K. Mitochondrial Oxidative Stress-A Causative Factor and Therapeutic Target in Many Diseases. Int J Mol Sci. 2021 [20] Guo C, Sun L, Chen X, Zhang D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res. 2013 [21] Jonscher KR, Chowanadisai W, Rucker RB. Pyrroloquinoline-Quinone Is More Than an Antioxidant: A Vitamin-like Accessory Factor Important in Health and Disease Prevention. Biomolecules. 2021 [22] Zhang C, Wen C, Lin J, Shen G. Protective effect of pyrroloquinoline quinine on ultraviolet A irradiation-induced human dermal fibroblast senescence in vitro proceeds via the anti-apoptotic sirtuin 1/nuclear factor-derived erythroid 2-related factor 2/heme oxygenase 1 pathway. Mol Med Rep. 2015 [23] Li J, Liu M, Liang S, Yu Y, Gu M. Repression of the Antioxidant Pyrroloquinoline Quinone in Skin Aging Induced by Bmi-1 Deficiency. Biomed Res Int. 2022 [24] Qin R, Sun J, Wu J, Chen L. Pyrroloquinoline quinone prevents knee osteoarthritis by inhibiting oxidative stress and chondrocyte senescence. American Journal of Translational Research. 2019 [25] Lee, J.-J.; Ng, S.-C.; Hsu, J.-Y.; Liu, H.; Chen, C.-J.; Huang, C.-Y.; Kuo, W.-W. Galangin Reverses H2O2-Induced Dermal Fibroblast Senescence via SIRT1-PGC-1α/Nrf2 Signaling. Int. J. Mol. Sci. 2022, 23, 1387. |
CategoriesAll Acne Age Clocks Ageing Aquatic Wrinkles Armpits Autophagy Biostimulators Blue Light & HEVIS Circadian Rhythms Cleansing Collagen CoQ10 Cosmetic Intolerance Syndrome Deodorant Dermaplaning Diabetes DNA Damage DNA Repair Dry Skin Epigenetics Evidence Based Skin Care Exfoliation Exosomes Eyes Face Or Feet? Facial Oils Fibroblast Fingertip Units Gendered Ageism Glycation Growth Factors Gua Sha Hair Hair Removal Hallmark Of Aging Healthy Skin Heat Shock Proteins Hormesis Humidity Hyaluron Hyaluronidase Hypo-allergenic Indulging Jade Roller Keratinocytes Licochalcone A Luxury Skin Care Lymphatic Vessel Ageing Malar Oedema Menopause Mitochondrial Dysfunction Mood Boosting Skin Care Neurocosmetics Ox Inflammageing Peptides PH Balance Skin Photo Biomodulation Polynucleotides Proteasome Psoriasis Regeneration Regenerative Treatments Review Safety Scarring Sensitive Skin Skin Care Regimen Skin Flooding Skin Hydration Skin Senescence Skip-Care Sleep Slugging Sunscreen Tanning Under Eye Bags UV Index Vitamin C Vitamin D Well Ageing Skin Care Wound Healing Wrinkles
Archives
December 2024
|
Anne-Marie van Geloven © 2024 All rights reserved
|