Live your best life & take care
Age clocks are sophisticated tools designed to measure our biological age, which differs from chronological age. While chronological age simply counts the years since birth, biological age reflects the functional state of an individual's body or specific tissues, such as the skin. These clocks use various biomarkers to estimate how well a person's body is aging at a cellular and molecular level. Biological age is a more accurate indicator of health and longevity than chronological age. It can be influenced by factors such as genetics, lifestyle, diet, and environmental exposures. Two individuals or even identical twins of the same chronological age may have significantly different biological ages, highlighting differences in their overall health and susceptibility to age-related diseases. Measuring biological age offers several benefits: 1. Early detection of accelerated aging, allowing for timely interventions. 2. Personalized health recommendations based on individual aging profiles. 3. Monitoring the effectiveness of lifestyle changes and anti-aging interventions. 4. More accurate prediction of health risks and potential longevity. For the skin specifically, measuring biological age can help assess the impact of environmental factors like sun exposure and guide targeted skincare strategies. Overall, biological age measurements provide valuable insights into an individual's health status, enabling proactive steps towards improving healthspan and potentially extending lifespan. Microbiome-based aging clocks represent an innovative approach to estimating biological age by leveraging the dynamic changes in the human microbiome throughout life. This concept has gained significant attention in recent years due to the growing understanding of the gut microbiome's crucial role in health and aging processes. INTRODUCTION TO MICROBIOME-BASED AGING CLOCKS Microbiome-based aging clocks are predictive models that estimate biological age using the composition, diversity, and functionality of the gut microbiota. These clocks offer a novel perspective on aging, complementing traditional epigenetic and other biological age clocks. COMPARISON WITH OTHER BIOLOGICAL AGE CLOCKS Epigenetic age clocks Epigenetic clocks, based on DNA methylation patterns, have been widely used to estimate biological age. These clocks, such as Horvath's clock and GrimAge, analyze specific CpG sites to predict age with high accuracy across various tissues including skin. OTHER BIOLOGICAL AGE CLOCKS ▌Telomere length-based clocks: Measure the length of telomeres, which shorten with age. ▌Proteomic clocks: Analyze protein levels in blood to estimate biological age. ▌Transcriptomic clocks: Use gene expression patterns to predict age. Compared to these established clocks, microbiome-based aging clocks offer unique advantages: 1. Non-invasive sampling: Gut microbiome samples can be collected easily through stool samples. 2. Rapid modulation: The microbiome can be quickly altered through diet and lifestyle changes, allowing for potential interventions. 3. Functional insights: These clocks provide information on metabolic and immune functions related to aging. TYPES OF MICROBIOME-BASED AGING CLOCKS Microbiome-based diversity clock: This model links the loss of microbial diversity to increased frailty. The 'Hybrid Niche Nature Model' uses Hubbell’s diversity index to estimate healthy aging, focusing on rare and abundant species rather than traditional richness and evenness measures. Although theoretical, this model suggests that greater uniqueness in the gut microbiome correlates with better health outcomes in older adults. Taxonomic composition-based clocks: These clocks predict age by analyzing the relative abundance of bacterial taxa at various levels. Machine learning models trained on large datasets can predict age with varying accuracy. For example, a study using gut microbiome data achieved a mean absolute error of 5.91 years. Another study found that skin microbiomes were more accurate than gut microbiomes in predicting age. Functional capacity-based clocks: These clocks assess the functional capacity of the microbiome by examining genes or metabolic pathways involved in microbial functions. They offer consistency across cohorts by focusing on microbial functions as a common denominator of health. A recent study developed a functional clock with a mean absolute error of 12.98 years by analyzing meta-transcriptomic profiles from a large cohort. Metabolite-based clocks: While still in development, these clocks use microbe-associated metabolites as biomarkers for biological age. Secondary bile acids, abundant in centenarians, have been identified as potential indicators. Multi-omics-based clocks: By integrating metagenomics, metatranscriptomics, and metabolomics data, these clocks provide a comprehensive understanding of the microbiome's role in aging. A study combining taxonomic and functional data achieved an average mean absolute error of 8.33 years. Microbiome-based aging clocks are promising tools for measuring biological aging and guiding health interventions. Their responsiveness to lifestyle changes makes them ideal for assessing strategies to promote longevity. As research progresses, combining host and microbiome data could enhance the accuracy of biological age predictions. This integrated approach will deepen our understanding of aging and help evaluate treatment effectiveness. Ultimately, these innovative tools will support a personalized approach to healthy aging, enabling dynamic precision skincare routines and lifestyle choices based on our unique biological profile. Take care Anne-Marie REFERENCES 1. Biological age vs. chronological age: ▌Belsky DW, et al. Biological age is superior to chronological age in predicting hospital mortality among critically ill patients. J Am Geriatr Soc. 2023;71(8):2462-2470. doi:10.1111/jgs.17982. 2. Health and longevity: ▌Levine ME, et al. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. 2015;16:25. doi:10.1186/s13059-015-0584-6. 3. Personalized health recommendations: ▌Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14:R115. doi:10.1186/gb-2013-14-10-r115. 4. Monitoring effectiveness of interventions: ▌ Zhang Y, et al. Biological age estimation: methods and biomarkers. Front Public Health. 2023;11:1074274. doi:10.3389/fpubh.2023.1074274. 5. Skin and environmental factors: ▌Richie J, et al. Skin photoageing following sun exposure is associated with decreased epigenetic and biologic age. Br J Dermatol. 2024;190(4):590-592. doi:10.1093/bjd/ljad527. 6. Microbiome's role in aging: ▌Ghosh T, et al. The gut microbiome as a modulator of healthy ageing. Nat Rev Gastroenterol Hepatol. 2022;19(8):497-511. doi:10.1038/s41575-022-00605-x. 7. Microbiome-based aging clocks: ▌Liu Z, et al. Human gut microbiome aging clocks based on taxonomic and functional profiles. Microbiome. 2022;10(1):1-15. doi:10.1186/s40168-022-01275-5. 8. Epigenetic age clocks: ▌Horvath S, et al. The epigenetic clock as a biomarker of aging and longevity: a review of recent advances and future directions. Aging Cell. 2022;21(9):e13607. doi:10.1111/acel.13607. 9. Microbiome-based diversity clock: ▌Sala C, et al. Gut microbiota ecology: Biodiversity estimated from hybrid neutral models and its relationship with health. PLoS One. 2020;15(10):e0237207. doi:10.1371/journal.pone.0237207. 10. Functional capacity-based clocks: ▌Min M, Egli C, Sivamani RK. The gut and skin microbiome and its association with aging clocks. Int J Mol Sci. 2024;25(13):7471. doi:10.3390/ijms25137471. 11. Taxonomic composition-based clocks: ▌Liu Y, et al. A biological age clock based on microbiome composition and its application in health assessment among older adults: an observational study in the UK Biobank cohort study population (N=500,000). Lancet Healthy Longev. 2023;4(7):e465-e466.doi:10.1016/S2666-7568(23)00213-1. 12. Metabolite-based clocks: ▌Sato Y, et al., Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians, Nature. 2021;599(7885):458–464.doi:10.1038/s41586-021-03832-5.
Comments
|
CategoriesAll Acne Age Clocks Ageing Aquatic Wrinkles Armpits Autophagy Biostimulators Blue Light & HEVIS Circadian Rhythms Cleansing Collagen CoQ10 Cosmetic Intolerance Syndrome Deodorant Dermaplaning Diabetes DNA Damage DNA Repair Dry Skin Epigenetics Evidence Based Skin Care Exfoliation Exosomes Eyes Face Or Feet? Facial Oils Fibroblast Fingertip Units Gendered Ageism Glycation Growth Factors Gua Sha Hair Hair Removal Hallmark Of Aging Healthy Skin Heat Shock Proteins Hormesis Humidity Hyaluron Hyaluronidase Hypo-allergenic Indulging Jade Roller Keratinocytes Licochalcone A Luxury Skin Care Lymphatic Vessel Ageing Malar Oedema Menopause Mitochondrial Dysfunction Mood Boosting Skin Care Neurocosmetics Ox Inflammageing Peptides PH Balance Skin Photo Biomodulation Polynucleotides Proteasome Psoriasis Regeneration Regenerative Treatments Review Safety Scarring Sensitive Skin Skin Care Regimen Skin Flooding Skin Hydration Skin Senescence Skip-Care Sleep Slugging Sunscreen Tanning Under Eye Bags UV Index Vitamin C Vitamin D Well Ageing Skin Care Wound Healing Wrinkles
Archives
December 2024
|
Anne-Marie van Geloven © 2024 All rights reserved
|