Live your best life & take care
Peptides have emerged as a powerhouse skincare ingredient, captivating both consumers and aesthetic healthcare professionals. These molecules composed of short chains of amino acids, are not just another fleeting trend; they represent a significant leap forward in our understanding of skin biology and regeneration. As the building blocks of essential proteins like collagen, elastin, and keratin, peptides play a crucial role in maintaining skin structure and function. Their improved ability to penetrate the skin's outer layer and communicate with cells has opened up new possibilities in addressing a wide range of skin concerns beyond aging skin, offering targeted solutions for those seeking science-backed approaches to skin health and beauty. WHAT ARE PEPTIDES? Peptides are short chains of amino acids, typically consisting of 2-50 amino acids, linked by peptide bonds. [1] They can be hormones, neurotransmitters, play a role in our immune system and serve as the building blocks of proteins, including collagen, elastin, and keratin, which are essential for skin structure and function. [2] BODY´S OWN PEPTIDES The exact number of peptides in the brain, body, and skin is not precisely defined due to the complexity and diversity of peptide structures and functions. However, here are some key peptides naturally present in these areas: Brain ▌Neuropeptides: Such as oxytocin, vasopressin, and endorphins, which play roles in mood regulation and social behaviors. ▌Enkephalins: Involved in pain modulation. Body ▌Insulin: Regulates glucose metabolism. ▌Glucagon: Works with insulin to maintain blood sugar levels. ▌Growth hormone: Stimulates growth and cell reproduction. Sometimes off label prescribed in regenerative medicine. Skin ▌Collagen peptides: Provide structural support and elasticity. ▌Elastin peptides: Contribute to skin's elasticity and resilience. These peptides are crucial for various physiological processes across different body systems. INCREASING POPULARITY IN SKINCARE The global peptide-based skincare market has experienced significant growth in recent years. ▌ The global peptide-based cosmetics market is projected to reach $39.9 billion by 2028, with a compound annual growth rate (CAGR) of 6.2% from 2021 to 2028. ▌Asia-Pacific is expected to witness the highest growth rate, driven by increasing disposable income and growing awareness of skincare products. ▌North America and Europe currently dominate the market, with the United States being a key player in peptide-based skincare innovation. MECHANISMS OF ACTION Peptides in skincare products primarily function through three main mechanisms: 1. SIGNAL PEPTIDES These stimulate collagen, elastin, and other protein production by sending "messages" to specific cells. [3] Signal peptides in skincare are short amino acid sequences that stimulate collagen, elastin, and other protein production by sending "messages" to specific cells. Palmitoyl Pentapeptide-4 (Pal-KTTKS, Matrixyl) [4] ▌ Mechanism: Stimulates collagen I, III, and IV production ▌ Penetration: Moderate, enhanced by palmitic acid attachment ▌ Efficacy: Increases production of extracellular matrix components ▌ Pros: Widely used and well-studied ▌ Cons: Efficacy may be concentration-dependent Palmitoyl Tripeptide-1 (Pal-GHK) [5] ▌ Mechanism: Stimulates TGF-β, promoting extracellular matrix production ▌ Penetration: Enhanced by palmitoyl group ▌ Efficacy: Increases collagen, elastin, and glycosaminoglycan production ▌ Pros: Multifunctional, targeting multiple aspects of skin aging ▌ Cons: Limited long-term studies available RGD-GHK and sOtx2-GHK [5] ▌Mechanism: Enhanced cell surface interaction through specific binding motifs ▌ Penetration: Improved compared to non-targeting peptides ▌ Efficacy: Superior anti-oxidative and anti-apoptotic effects compared to GHK alone ▌ Pros: RGD-GHK shows exceptional anti-aging activity and potential for wound healing ▌ Cons: More research needed on long-term effects and optimal formulations 2. CARRIER PEPTIDES They help deliver trace elements like copper and manganese necessary for wound healing and enzymatic processes.[3] GHK-Cu (Copper Tripeptide-1) [4] ▌ Mechanism: Delivers copper to cells, promoting wound healing and collagen synthesis ▌ Penetration: Moderate, enhanced by copper chelation ▌ Efficacy: Promotes wound healing and has antioxidant properties ▌ Pros: Well-studied for wound healing applications ▌ Cons: Potential for oxidative damage if used in high concentrations 3. NEUROTRANSMITTER-INHIBITING PEPTIDES These work similarly to botulinum toxin, reducing muscle contractions that lead to expression lines. [3] Acetyl Hexapeptide-3 (Argireline) [4] ▌ Mechanism: Inhibits SNARE complex formation, reducing muscle contractions ▌ Penetration: Limited due to larger size ▌ Efficacy: Reduces appearance of expression lines ▌ Pros: Non-invasive alternative to botulinum toxin ▌ Cons: Effects are temporary and may vary between individuals I would not want to compare the efficacy to botulinum toxin The challenge with peptides in skincare is their skin permeability. Most anti-wrinkle peptides are not ideal candidates for skin permeation, and enhancement methods are often necessary to increase their permeability and effectiveness. [5] Researchers are exploring ways to improve peptide delivery and efficacy, such as designing novel targeting peptide motifs to enhance the interaction between cosmetic peptides and the cell surface. [5] SOME OTHER PEPTIDES USED IN SKINCARE 4. Enzyme-inhibitor peptides: These block enzymes that break down collagen and other important skin proteins. 5. Antimicrobial peptides (AMPs): These are part of the immune response in living organisms and help defend against pathogens. 6. Antioxidant peptides: These help protect the skin from oxidative stress and free radical damage. BENEFITS OF PEPTIDES IN SKINCARE 1. Collagen stimulation: Certain peptides, such as palmitoyl pentapeptide-4, have been shown to stimulate collagen production, potentially reducing the appearance of fine lines and wrinkles. [6] 2. Improved skin barrier function: Peptides like palmitoyl tetrapeptide-7 may help reduce inflammation and improve skin barrier function. [7] 3. Antioxidant properties: Some peptides, including copper peptides, exhibit antioxidant properties, potentially protecting the skin from oxidative stress. [8] 4. Hydration: Peptides can act as humectants, helping to retain moisture in the skin. [9] COLLAGEN STIMULATING PEPTIDES Mode of Action: Collagen peptides potentially stimulate fibroblast proliferation and increase the expression of collagen and elastin genes, enhancing the structural integrity of the skin..[1][2] While many peptides are too large to penetrate the skin effectively, some collagen-stimulating peptides have shown evidence of skin penetration and efficacy in skincare formulations. 1. Penetration-enhancing techniques: Various methods have been developed to improve peptide penetration into the skin, including chemical modification, use of penetration enhancers, and encapsulation in nanocarriers. [10] Cell-Penetrating Peptides (CPPs) The discovery of cell-penetrating peptides (CPPs) is a significant advancement in drug delivery systems, particularly for large molecular cargoes. [11][12] Key features of CPPs include: 1. Composition: Rich in positively charged amino acids (arginine, lysine) [13] 2. Function: Ability to cross cell membranes [14] 3. Cargo capacity: Can transport large molecules into cells [15] 4. Potential applications: Delivery of therapeutic agents, including nucleic acids [12][15] 2. Specific evidence based peptides: ▌GHK (Glycyl-L-histidyl-L-lysine): This copper peptide has shown ability to penetrate the skin and stimulate collagen production. [3] ▌KTTKS (Lysine-threonine-threonine-lysine-serine): When modified with palmitic acid (palmitoyl pentapeptide-4), this peptide demonstrated improved skin penetration and collagen-stimulating effects. [3] ▌GEKG (Glycine-glutamic acid-lysine-glycine): Studies have shown this tetrapeptide can penetrate the skin when used with appropriate delivery systems. [6] GEKG significantly induces collagen production at both the protein and mRNA levels in human dermal fibroblasts. [7] GEKG is derived from extracellular matrix (ECM) proteins and has been shown to enhance gene expression responsible for collagen production up to 2.5-fold [7] boosts collagen, hyaluronic acid, and fibronectin production by dermal fibroblasts. [7] ▌Palmitoyl Pentapeptide Mode of Action: These peptides mimic the body's natural peptides that signal fibroblasts to produce more collagen. [1][2] Their efficacy can vary depending on the specific formulation, percentage and delivery method used. EVEN MORE PEPTIDES 1. Antifungal peptides (AFPs): These molecules defend organisms against fungal infections. 2. Neuropeptides: These peptides function as neurotransmitters or neuromodulators in the nervous system. 3. Cardiovascular peptides: These include peptides like adrenomedullin and angiotensin II, which play roles in cardiovascular function. 4. Endocrine peptides: These are hormone peptides that regulate various physiological processes, such as leptin, orexin, and growth hormone. 5. Anticancer peptides: These include molecularly targeted peptides, "guiding missile" peptides, and cell-stimulating peptides used in cancer treatment. 6. Plant peptides: These originate from plants and have various health benefits for humans. They can be incoroprated in skincare formulations. 8. Oligopeptides and polypeptides: These classifications are based on the number of amino acids in the peptide chain, also found in skincare. 9. Ribosomal and non-ribosomal peptides: These categories are based on how the peptides are synthesized. This diverse range of peptide types reflects their varied functions and applications in biological systems and therapeutic interventions. OS-01 [16][17] OS-01 from One Skin is a peptide designed to target cellular senescence, one of the 12 hallmark of skin aging. OS-01 works by reducing the accumulation of senescent cells—cells that have stopped dividing (also called zombie cells) and contribute to age-related deterioration. By decreasing the burden of these cells, OS-01 aims to improve skin appearance and function by boosting collagen and hyaluronic acid production, which are essential for skin elasticity and hydration. PEPTIDES FOR LONGEVITY ▌NAD+: A coenzyme that supports energy production, cellular repair, and longevity. It plays a role in DNA repair and declines with age. [18] ▌Epithalon: Regulates telomerase production, protecting against telomere degradation, which is crucial for cellular longevity. Research conducted by Khavinson et al. showed that Epithalon treatment significantly increased telomere lengths in blood cells of patients aged 60-65 and 75-80 years. ▌BPC157: Known for promoting healing and reducing inflammation, it also boosts collagen production, supporting skin health. [19] COLLAGEN PEPTIDE POWDERS. Bovine collagen peptides, extracted from cow hides, are rich in types I and III collagen. These types are prevalent in human skin, making bovine collagen a popular supplement, especially as they contain the building blocks for collagen production.. Research has shown that oral supplementation with bovine collagen peptides can improve skin elasticity and hydration. Marine collagen, derived from fish scales and skin, is primarily type I collagen with high bioavailability and absorption rate. Studies have demonstrated that marine collagen peptides can enhance skin hydration, reduce wrinkles, and improve wound healing. Additionally, marine collagen has shown promise in supporting bone health by potentially increasing bone mineral density. Plant-based collagen boosters, while not containing actual collagen, provide nutrients that support the body's natural collagen production. These supplements often include ingredients like vitamin C, silica, and various amino acids. Although not as extensively studied as animal-derived collagens, plant-based options cater to vegan consumers and those with dietary restrictions. In powder form they can easily be mixed into beverages or foods. The hydrolyzed nature of these peptides enhances their bioavailability. CHALLENGE Stability: Some peptides are unstable and may degrade quickly in formulations. Peptides, while very promising, are not straightforward ingredients in skincare products or oral supplementation. Their effectiveness depends on various factors, including formulation, delivery system, and individual skin characteristics. Always consult a qualified healthcare professional to determine what the most suitable approach is for your needs and goals. Take care Anne-Marie References: [1] Edgar, S., Hopley, B., Genovese, L. et al. Effects of collagen-derived bioactive peptides and natural antioxidant compounds on proliferation and matrix protein synthesis by cultured normal human dermal fibroblasts. Sci Rep 8, 10474 (2018). https://doi.org/10.1038/s41598-018-28492-w [2] Frontiers | Collagen peptides affect collagen synthesis and the expression of collagen, elastin, and versican genes in cultured human dermal fibroblasts [3] Pickart L, et al. GHK Peptide as a Natural Modulator of Multiple Cellular Pathways in Skin Regeneration. Biomed Res Int. 2015;2015:648108. doi:10.1155/2015/648108. [4] Draelos, Z. D. (2007). What are cosmeceutical peptides? Dermatology Times, 28(11). Retrieved from https://www.dermatologytimes.com/view/what-are-cosmeceutical-peptides [5] He B, Wang F, Qu L. Role of peptide-cell surface interactions in cosmetic peptide application. Front Pharmacol. 2023 Nov 13;14:1267765. doi: 10.3389/fphar.2023.1267765. PMID: 38027006; PMCID: PMC10679740. [6] Binder L, et al. Dermal peptide delivery using enhancer molecules and colloidal carrier systems--A comparative study of a cosmetic peptide. Int J Pharm. 2018;557:36-46. doi:10.1016/j.ijpharm.2018.08.019. [7] Farwick M, Grether-Beck S, Marini A, Maczkiewitz U, Lange J, Köhler T, Lersch P, Falla T, Felsner I, Brenden H, Jaenicke T, Franke S, Krutmann J. Bioactive tetrapeptide GEKG boosts extracellular matrix formation: in vitro and in vivo molecular and clinical proof. Exp Dermatol. 2011 Jul;20(7):602-4. doi: 10.1111/j.1600-0625.2011.01307.x. PMID: 21692860. [8] Bae, S. H., et al. (2020). "Copper peptides as a potential therapeutic agent for skin aging." Journal of Cosmetic Dermatology, 19(9), 2245-2252. doi:10.1111/jocd.13435. [9] Zhao, Y., et al. (2019). "Peptides and Proteins as Skin Moisturizers." Cosmetics, 6(3), 32. doi:10.3390/cosmetics6030032. [10] International Journal of Cosmetic Science Skin permeability, a dismissed necessity for anti-wrinkle peptide performance Seyedeh Maryam Mortazavi, Hamid Reza Moghimi First published: 18 March 2022 https://doi.org/10.1111/ics.12770 [11] Lindgren, M., Hällbrink, M., Prochiantz, A., & Langel, Ü. (2000). Cell-penetrating peptides. Trends in Pharmacological Sciences, 21(3), 99-103. [12] Tripathi, P. P., Arami, H., Banga, I., Gupta, J., & Gandhi, S. (2018). Cell penetrating peptides in preclinical and clinical cancer diagnosis and therapy. Oncotarget, 9(98), 37252-37267. [13] Chu, D., Xu, W., Pan, R., Ding, Y., Sui, W., & Chen, P. (2015). Rational modification of oligoarginine for highly efficient siRNA delivery: structure-activity relationship and mechanism of intracellular trafficking of siRNA. Nanomedicine: Nanotechnology, Biology and Medicine, 11(2), 435-446. [14] Frankel, A. D., & Pabo, C. O. (1988). Cellular uptake of the tat protein from human immunodeficiency virus. Cell, 55(6), 1189-1193. [15] Guidotti, G., Brambilla, L., & Rossi, D. (2017). Cell-Penetrating Peptides: From Basic Research to Clinics. Trends in Pharmacological Sciences, 38(4), 406-424. [16] Zonari, A., et al. (2023) "Double-blind, vehicle-controlled clinical investigation of peptide OS-01." Journal of Cosmetic Dermatology. doi:10.1111/jocd.16242. [17] Kirkland, J. L., et al. (2017). "Cellular Senescence: A Key Regulator of Aging." *Nature Reviews Molecular Cell Biology*, 18(7), 473-485. doi:10.1038/nrm.2017.30. [18] Fang, E. F., et al. (2019). NAD+ augmentation restores mitophagy and limits accelerated aging in Werner syndrome. Nature Communications, 10(1), 5284. [19] Chang CH, Tsai WC, Hsu YH, Pang JH. Pentadecapeptide BPC 157 enhances the growth hormone receptor expression in tendon fibroblasts. Molecules. 2014 Nov 19;19(11):19066-77. doi: 10.3390/molecules191119066. PMID: 25415472; PMCID: PMC6271067.
Comments
|
CategoriesAll Acne Age Clocks Ageing Aquatic Wrinkles Armpits Autophagy Biostimulators Blue Light & HEVIS Circadian Rhythms Cleansing Collagen CoQ10 Cosmetic Intolerance Syndrome Deodorant Dermaplaning Diabetes DNA Damage DNA Repair Dry Skin Epigenetics Evidence Based Skin Care Exfoliation Exosomes Eyes Face Or Feet? Facial Oils Fibroblast Fingertip Units Gendered Ageism Glycation Growth Factors Gua Sha Hair Hair Removal Hallmark Of Aging Healthy Skin Heat Shock Proteins Hormesis Humidity Hyaluron Hyaluronidase Hypo-allergenic Indulging Jade Roller Keratinocytes Licochalcone A Luxury Skin Care Lymphatic Vessel Ageing Malar Oedema Menopause Mitochondrial Dysfunction Mood Boosting Skin Care Neurocosmetics Ox Inflammageing Peptides PH Balance Skin Photo Biomodulation Polynucleotides Proteasome Psoriasis Regeneration Regenerative Treatments Review Safety Scarring Sensitive Skin Skin Care Regimen Skin Flooding Skin Hydration Skin Senescence Skip-Care Sleep Slugging Sunscreen Tanning Under Eye Bags UV Index Vitamin C Vitamin D Well Ageing Skin Care Wound Healing Wrinkles
Archives
December 2024
|
Anne-Marie van Geloven © 2024 All rights reserved
|