Live your best life & take care
12/7/2024 Comments Collagen bankingCollagen banking is a proactive skincare strategy falling under the category prejuvenation aimed at preserving and stimulating collagen production to maintain youthful, firm and excellent skin quality over time. This approach can involve using various treatments, tweakments, products, supplements and lifestyle choices to boost collagen levels before significant signs of aging appear. The goal is to build a "reserve" or “bank” of collagen, ensuring skin remains resilient and less prone to wrinkles and sagging as natural collagen production declines and degradation increases with age. To start banking collagen as early as in your twenties makes sense, as the producing cell called the dermal fibroblast is still very healthy and active. Moreover as the loss is not yet so great (just a few percent loss), thus less invasive methods work well to maintain a youthful status quo. I´s never too late to start “banking” collagen, although when you are more mature, the word rejuvenation might be more suitable. There is no direct scientific evidence that collagen stimulation is more effective in your twenties than in your sixties. However, starting collagen stimulation earlier may be beneficial: ▌Collagen production begins to decline around age 25-30, decreasing by about 1% per year. ▌By the 50s and beyond, the collagen loss is greater >30%, becomes more noticeable and it´s always harder to get back what you lost than to maintain what you have. ▌Peak collagen levels occur at twenty years of age, thus maintaining what you have the highest achievable level. ▌Starting collagen stimulation treatments earlier may help prevent further collagen loss and require less invasive and number of treatments. WHAT IS COLLAGEN Collagen is the most abundant protein in the human body, making up about one-third of all proteins. 1. Location: Found in connective tissues, including skin, tendons, bones, and cartilage. 2. Function: Provides structural support, strength, and elasticity to tissues. 3. Production: Naturally produced by the body, but production decreases with age, starting around the mid-20s. Collagen plays a crucial role in maintaining skin elasticity, joint health, and overall tissue integrity. As collagen production declines with age, so does the skin quality, leading to visible signs of aging like wrinkles, loss of elasticity and firmness, and sagging skin. Collagen is one of the key target components for noticeable and effective skin rejuvenation or regeneration. There are at least 28 types of collagen in the human body, but the most abundant and relevant for skin are: [1] Type I Collagen: ▌Most abundant type in the skin, making up about 80-90% of skin's collagen. ▌Provides tensile strength and structure to the skin. ▌Maintains skin elasticity and firmness. Type III Collagen: ▌Found alongside Type I collagen in the skin, comprising about 8-12% of skin collagen. ▌Contributes to skin firmness and elasticity. ▌Important in early stages of wound healing and fetal development. Type IV Collagen: ▌Found in the basement membrane of the skin. ▌Provides support and filtration in the basement membranes. ▌Crucial for overall skin health and function. Type V and VI Collagen: ▌Present in smaller amounts in the skin. ▌Support skin health and collagen fibril formation. Collagen is primarily composed of three key amino acids: ▌Glycine: is the most abundant, contributing significantly to collagen's structure and stability ▌ Proline ▌ Hydroxyproline Proline and hydroxyproline are crucial for forming the triple-helix structure of collagen, which provides strength and flexibility. Additionally, essential amino acids like lysine play a critical role in collagen synthesis by forming hydroxylysine, important for stabilizing collagen fibers. A balanced intake of these amino acids is vital for maintaining healthy collagen levels in the body. COLLAGEN DECLINE Collagen production begins to diminish naturally in our mid-20s, decreasing by about 1% per year [2]. This decline becomes more pronounced in the 40s and 50s, contributing to visible signs of aging such as wrinkles and sagging skin [2]. Factors influencing collagen loss include genetic predisposition (DNA), changes in epigenetic pattern (influenced by environment), hormonal changes (especially post-menopause), and fibroblast aging [2][3]. Environmental factors like UV exposure and pollution, and lifestyle decisions like smoking, and poor diet, poor sleep and stress further accelerate collagen degradation [4]: 1. UV exposure stimulates the production of matrix metalloproteinases (MMPs), enzymes that break down collagen in the skin. 2. Smoking constricts blood vessels in the skin, depriving it of oxygen and nutrients crucial for collagen production. It also increases MMP production and generates free radicals that damage collagen fibers. 3. Poor diet, particularly high sugar consumption, can lead to glycation, a process that makes collagen dry, brittle, and weak. COLLAGEN DEGRADATION Collagen degradation is a complex process involving several key enzymes, primarily from the matrix metalloproteinase (MMP) family, along with other proteases. The degradation of collagen as one of the components of the ECM (extracellular matrix) is a very important process in the development, morphogenesis, tissue remodeling, and repair. 1. Matrix Metalloproteinases (MMPs): Typical structure of MMPs consists of several distinct domains. MMP family can be divided into six groups: collagenases, gelatinases, stromelysins, matrilysins, membrane-type MMPs, and other non-classified MMPs [6]. ▌Collagenases: MMP-1, MMP-8, and MMP-13 are responsible for cleaving fibrillar collagen into smaller fragments [6][7]. ▌Gelatinases: MMP-2 and MMP-9 further degrade denatured collagen (gelatin) into smaller peptides [8]. ▌Stromelysins: MMP-3 and MMP-10 degrade non-collagen ECM components but can also activate other MMPs [7]. ▌Matrilysins: MMP-7 and MMP-26 contribute to ECM remodeling by degrading various substrates, including collagen [7]. 2. Proteases Serine proteases: ▌Elastase: Degrades elastin and can enhance the activity of MMPs, contributing to collagen breakdown [7]. Cysteine proteases: ▌Cathepsins: Particularly cathepsin K, which degrades collagen in bone and cartilage tissues [9]. Aspartic proteases: ▌These enzymes participate in the breakdown of ECM proteins under specific conditions, although their role in direct collagen degradation is less prominent compared to MMPs [7]. Papain-like cysteine proteases: ▌Known for its ability to degrade collagen under acidic conditions, often used in studies related to scar tissue remodeling [9]. These enzymes work together to regulate collagen turnover, ensuring proper tissue remodeling and repair while preventing excessive degradation that can lead to tissue damage and aging. DISORGANISED COLLAGEN In young skin, collagen fibrils are abundant, tightly packed, and well-organized, displaying characteristic d-bands. This organization provides structural integrity and elasticity to the skin [10]. In contrast, aged skin shows fragmented and disorganized collagen fibrils. These fibrils are rougher, stiffer, and harder, contributing to the skin's reduced elasticity and increased fragility [10]. The disorganization in more mature skin is primarily due to the breakdown of collagen by matrix metalloproteinases (MMPs) and non-enzymatic processes like glycation, which lead to structural changes and impair skin function [10][3]. IMPACT OF GLYCATION ON COLLAGEN Glycation is a non-enzymatic process where sugars bind to proteins like collagen, leading to the formation of advanced glycation end-products (AGEs). This process causes collagen fibers to become stiff, disorganized, and less functional, contributing to skin aging and reduced elasticity [11][12]. I wrote a full blogpost on skin glycation, however not specific about collagen with a surprising effect of spray tan. Read more. Prevention and treatment of glycation [13][14][15] 1. Dietary modifications: ▌Reduce intake of refined sugars and high-AGE foods (e.g., fried and processed foods). ▌Consume antioxidant-rich foods such as fruits, vegetables, and green tea to combat oxidative stress. 2. Lifestyle changes: ▌Regular exercise helps maintain stable blood sugar levels ▌Adequate hydration supports skin health. 3. Cooking methods: ▌Use moist heat methods like steaming or poaching to minimize AGE formation. 4. Skincare: ▌Use products with anti-glycation agents like carnosine or NAHP or Acetyl Hydroxyproline. ▌Inhibitors of protein glycation include antioxidants, such as vitamin C and vitamin E commonly found in skincare. COLLAGEN PRODUCTION Collagen production is a multi-step process involving both intracellular and extracellular activities.
SKINCARE INGREDIENTS THAT STIMULATE COLLAGEN PRODUCTION 1. Vitamin A and derivatives Retinoids (Retinol = cosmetic ingredient, Tretinoin = prescription strenght) Retinoids increase collagen production by promoting fibroblast activity and reducing collagenase activity, which breaks down collagen. This is a dose-dependant effect. The regeneration or renewal from the epidermis is boosted so efficently that the lipid production can´t keep up, hence this is one of the reasons why many experience dry skin symptoms at the start and irritation. Lipids are like the morter between the bricks of the skin barrier. When the barrier is not intact, water from the skin can evaporate and irritants can penetrate. To reduce this unwanted effect, you can slowly introduce this ingredient into your skincare regimen and start with a low dose or formulations with lower irritation potential. Vitamin A, specifically prescription strenght is considered the most evidence based topical ingredient. 2. Vitamin C (Ascorbic Acid) Vitamin C, also known as ascorbic acid, plays a crucial role in collagen synthesis and maintenance, significantly influencing skin health and structural integrity. Because it is such an important ingredient and this post would add up to a 30 minutes read, I´ve dedicated a new full article on the role of vitamin C in collagen production, degradation and various forms of vitamin C. Click here. 3. Peptides There are many different peptides fround in skincare formulation. We can identify the following main types by function: 1. Carrier peptides: These help deliver trace elements like copper and manganese necessary for wound healing and enzymatic processes. 2. Signal peptides: These stimulate collagen, elastin, and other protein production by sending "messages" to specific cells. 3. Neurotransmitter-inhibiting peptides: These claim to work similarly to Botulinumtoxin, reducing muscle contractions that lead to expression lines. 4. Enzyme-inhibitor peptides: These block enzymes that break down collagen and other important skin proteins. 5. Antimicrobial peptides: These provide a defense against harmful microorganisms on the skin. 6. Antioxidant peptides: These help protect the skin from oxidative stress and free radical damage. Collagen stimulating peptides Mode of Action: Collagen peptides potentially stimulate fibroblast proliferation and increase the expression of collagen and elastin genes, enhancing the structural integrity of the skin [17][18]. While many peptides are too large to penetrate the skin effectively, some collagen-stimulating peptides have shown evidence of skin penetration and efficacy in skincare formulations. 1. Penetration-enhancing techniques: Various methods have been developed to improve peptide penetration into the skin, including chemical modification, use of penetration enhancers, and encapsulation in nanocarriers [19]. 2. Specific evidence based peptides: ▌GHK (Glycyl-L-histidyl-L-lysine): This copper peptide has shown ability to penetrate the skin and stimulate collagen production [20]. ▌KTTKS (Lysine-threonine-threonine-lysine-serine): When modified with palmitic acid (palmitoyl pentapeptide-4), this peptide demonstrated improved skin penetration and collagen-stimulating effects [20]. ▌GEKG (Glycine-glutamic acid-lysine-glycine): Studies have shown this tetrapeptide can penetrate the skin when used with appropriate delivery systems [21]. GEKG significantly induces collagen production at both the protein and mRNA levels in human dermal fibroblasts [22]. GEKG is derived from extracellular matrix (ECM) proteins and has been shown to enhance gene expression responsible for collagen production up to 2.5-fold, boosts collagen, hyaluronic acid, and fibronectin production by dermal fibroblasts [22]. ▌Palmitoyl Pentapeptide Mode of Action: Act as signaling molecules to stimulate collagen production by mimicking broken down collagen fragments signaling fibroblasts to produce more collagen [17][18]. Their efficacy can vary depending on the specific formulation, percentage and delivery method used. More about peptides click here 4. Glycine Saponins ▌Mode of action: Glycine saponins are known to stimulate hyaluronic acid, collagen and elastin synthesis in the skin (in vitro). 5. Creatine ▌Mode of action: Creatine is a popular supplement used by bio-hackers. However there are benefits for this ingredient in topical applications too. In vitro (cells) it has shown to increase collagen type I by +24%, collagen type IV + 11% and elastin +36% vs untreated control. 7. Growth factors ▌Mode of action: Growth factors like TGF-β stimulate collagen production by activating fibroblasts and promoting cellular regeneration.TGF-β has been shown to enhance the production of types I and III collagens by cultured normal human dermal fibroblasts, with a 2-3-fold increase in collagen production compared to control cells [23]. 8. Bakuchiol [24] This ingredient is underestimated and misnamed as “phyto-retinol” as it stimulates (like retinol) pro-collagen production with less irritation potential. However this is where the comparison stops. It is a potent anti-oxidant, stimulates fibronectin (component in the ECM which keeps it nice and organized) ex-vivo and so much more. Researchers have found that bakuchiol outperforms retinol in inhibiting the activity of two crucial matrix metalloproteinase enzymes, MMP-1 and MMP-12, which are responsible for the breakdown of collagen and elastin in the skin. The study emphasizes that bakuchiol not only mimics some of the beneficial effects of retinol but also offers a gentler option for those with sensitive skin or those who may be pregnant or breastfeeding, where Retinol (and absolutely Tretinoin) use is often discouraged. Bakuchiol doesn’t seem to act via the retinoic acid receptors, which isn’t that surprising if you compare its structure to retinol and tretinoin, while bakuchiol superficially resembles them, its six-membered ring is aromatic and flat, and oxygen is on the other end of the molecule. 9. Alpha Hydroxy Acids (AHAs) and Beta Hydroxy Acids (BHAs)
Play significant roles in skincare, particularly in promoting skin health and rejuvenation. Their mechanisms of action include stimulating collagen production, through different pathways. Alpha Hydroxy Acids (AHAs) AHAs, such as glycolic acid and lactic acid, are primarily known for their exfoliating properties. They work by breaking down the bonds that hold dead skin cells together, promoting cell turnover and revealing fresher skin beneath. However, AHAs also have a direct impact on collagen production: 1. Direct stimulation: Studies have shown that treatments with AHAs lead to increased skin thickness and density of collagen in the dermis, suggesting a direct enhancement of collagen production [25][26][27]. 2. Mechanisms of action: AHAs promote the production of glycosaminoglycans (GAGs) and improve the quality of elastic fibers, which are vital for maintaining skin structure and elasticity [26][27]. Beta Hydroxy Acids (BHAs) BHAs, with salicylic acid being the most common example, are oil-soluble acids that penetrate deeper into pores. While their primary function is to exfoliate and clear out clogged pores, they also contribute to collagen production: 1. Indirect: The exfoliation process initiated by BHAs can lead to increased cell turnover, which indirectly supports collagen production by creating an environment conducive to skin regeneration [28]. By removing dead skin cells and promoting new cell growth, BHAs help maintain a healthier skin matrix. 2. Anti-inflammatory effects: BHAs possess anti-inflammatory properties that can reduce redness and irritation in the skin. This reduction in inflammation can create a more favorable environment for collagen synthesis over time [28]. 10. Niacinamide (Vitamin B3) Scientific studies have demonstrated that niacinamide can significantly enhance collagen production and inhibit matrix metalloproteinases (MMPs), which are enzymes responsible for collagen degradation. 1. Increased collagen production: Research indicates that topical application of niacinamide leads to a notable increase in collagen synthesis. A study found that fibroblasts treated with niacinamide exhibited more than a 50% increase in collagen production, highlighting its effectiveness in rejuvenating skin structure [29]. 2. Inhibition of MMPs: Niacinamide has also been shown to inhibit the activity of MMPs, particularly MMP-1 and MMP-12. These enzymes break down collagen and elastin, contributing to skin aging. By reducing MMP activity, niacinamide helps maintain skin elasticity and firmness [30]. 3. Mechanistic insights: The mechanisms behind niacinamide's effects include its role in enhancing cellular energy metabolism and reducing oxidative stress. Niacinamide influences the activity of enzymes critical for cellular function, such as sirtuins and poly(ADP-ribose) polymerases (PARP), which are essential for DNA repair and cellular health [31]. Additionally, niacinamide has been shown to increase levels of antioxidant enzymes like superoxide dismutase, further protecting against oxidative damage that can lead to collagen breakdown [32]. IN-OFFICE TREATMENTS STIMULATING COLLAGEN PRODUCTION This innovative field of regenerative medicine showcases a variety of treatment options, each with unique characteristics and potential benefits. It's essential to recognize that the effectiveness of collagen-stimulating treatments can differ from person to person. For the best outcomes, a combination of methods may be suggested. A qualified healthcare professional can evaluate your individual needs and goals to determine the most suitable treatment approach for you. 1. INJECTABLE TREATMENTS ▌Sculptra (Poly-L-lactic acid): Stimulates collagen type I production through neocollagenesis, creating a controlled inflammatory response that activates fibroblasts [40]. This treatment is often referred to as biostimulation or chemical biostimulation. Key points about Sculptra and collagen stimulation: 1. Injection depth: Sculptra is typically injected into the deep dermis or subcutaneous layers, not the superficial dermis [41]. 2. Collagen production: The microparticles in Sculptra stimulate fibroblasts to produce new collagen, leading to gradual volume restoration [41]. 3. Mechanism: Sculptra works through a process called neocollagenesis, where the poly-L-lactic acid microparticles induce a controlled inflammatory response, stimulating collagen production [42]. 4. Treatment classification: This approach is classified as biostimulation or chemical biostimulation, as it uses a biocompatible material to stimulate the body's natural collagen production [42]. 5. Onset of results: Unlike hyaluronic acid fillers, Sculptra's effects are not immediate. Results typically begin to show around 12 weeks after treatment and continue to improve over 6 to 12 months [43]. 6. Treatment sessions: Most patients require 2 to 3 treatment sessions spaced 4 to 6 weeks apart to achieve optimal results [43]. Sculptra primarily stimulates Type I collagen production in the skin. According to peer-reviewed research: 1. Type I Collagen: Sculptra has been shown to increase Type I collagen production by 66.5% after 3 months of treatment [44]. 2. Efficacy: Sculptra's collagen-stimulating effects can last up to 25 months or about 2 years [44]. ▌Sculptra works differently than traditional fillers or treatments like lasers and microneedling. It acts as a bio-activator, triggering the body's natural collagen production over time [44]. ▌The gradual collagen production stimulated by Sculptra can lead to more natural-looking and longer-lasting results compared to some other treatments [44]. ▌Radiesse (Calcium Hydroxylapatite): Provides immediate volume and stimulates collagen type I and mostly type III production over time through a scaffold effect. ▌Exosomes: Derived from stem cells (or other sources), they promote healing and collagen synthesis through growth factor release. ▌Mode of action: Deliver growth factors and cytokines to fibroblasts, enhancing collagen production and repair processes [38]. ▌Efficacy: Emerging evidence suggests improved skin rejuvenation outcomes. ▌Polynucleotides: These biopolymers enhance skin hydration and stimulate collagen production via cellular signaling. ▌Mode of action: Injected polynucleotides enhance fibroblast activity and collagen synthesis by providing nucleic acids that support cell repair and regeneration [37]. ▌Efficacy: Improves skin hydration and elasticity over time. ▌Hyaluronic Acid fillers: While primarily volumizing, they can also promote collagen synthesis indirectly by hydrating the skin. 2. ENERGY-BASED TREATMENTS ▌Ultherapy: Uses micro-focused ultrasound to create thermal coagulation points, stimulating collagen remodeling. ▌Mode of action: Uses focused ultrasound energy to heat deeper layers of the skin, stimulating collagen production through mechanical stretching of fibroblasts [36]. ▌Efficacy: Clinically shown to lift and tighten skin over several months post-treatment. ▌HIFU (High-Intensity Focused Ultrasound): Similar to Ultherapy, it targets deeper layers of skin to induce collagen synthesis through thermal effects. ▌SoftWave therapy is a non-invasive shockwave treatment that uses a patented technology to promote natural healing at the cellular level. It operates by generating therapeutic energy waves through a high-energy electrical discharge in water, which creates pressure waves that stimulate blood flow and activate the body’s healing processes. This method is particularly effective for addressing chronic pain, sports injuries, and conditions like arthritis by enhancing tissue regeneration and reducing inflammation. ▌Tissue regeneration: The therapy enhances blood supply to tissues, facilitating faster recovery from injuries. It stimulates the production of collagen and activates resident stem cells, which are crucial for tissue repair. ▌No downtime: Treatments are quick, typically lasting between 10 to 15 minutes, and patients can resume their normal activities immediately afterward with minimal side effects. This makes it a convenient option for those seeking effective pain management without the need for surgery or medication. ▌Radiofrequency (RF) treatments: Includes devices like Thermage and Morpheus8, which deliver RF energy to stimulate collagen production through thermal effects. ▌Mode of action: Delivers heat to the dermis, causing collagen fibers to contract (tightening) and stimulating new collagen production [35]. ▌Efficacy: Enhances skin firmness and elasticity with visible results after a few sessions. ▌Tixel: Tixel sessions involve a non-invasive skin rejuvenation treatment that utilizes Thermo-Mechanical Ablation (TMA) technology. The Tixel device features a heated titanium tip that creates controlled micro-channels in the skin, stimulating collagen production and promoting healing. ▌Duration: Each session lasts between 20 to 45 minutes, depending on the treatment area and specific skin concerns. ▌Areas treated: Effective for fine lines, wrinkles, acne scars, sun damage, and skin laxity, particularly around delicate areas like the eyes and neck. ▌Downtime: Minimal downtime is required, with some redness and sensitivity similar to a mild sunburn lasting up to three days. ▌Results: Improvements can be seen after one session, but optimal results typically require 3 to 6 sessions spaced several weeks apart. 3. LASER TREATMENTS ▌Ablative lasers (e.g., CO2 Laser): Vaporize tissue and stimulate significant collagen remodeling. ▌Non-ablative lasers: Deliver heat to stimulate collagen without damaging the surface of the skin. ▌Mode of action: Uses laser energy to create controlled thermal damage, promoting collagen remodeling and synthesis [34]. ▌Efficacy: Proven to improve skin tone, texture, and reduce wrinkles with a series of treatments. ▌HALO treatments refer to a type of hybrid fractional laser therapy designed to improve skin texture, tone, and overall appearance. The HALO laser combines two types of wavelengths: 1. Ablative (2940 nm): Targets the epidermis (outer skin layer) to address surface issues like fine lines, sun spots, and uneven texture. 2. Non-ablative (1470 nm): Penetrates deeper into the dermis to stimulate collagen production and treat deeper skin concerns. ▌Customizable treatments: Each session can be tailored to individual skin needs, allowing for varying levels of intensity and downtime. ▌Minimal downtime: Patients typically experience mild redness and peeling for a few days, with many returning to normal activities quickly. ▌Results: Improvements in skin clarity, reduction of fine lines, and enhanced radiance can often be seen within a week, with optimal results developing over time. HALO treatments are suitable for all skin types and are often recommended for those seeking significant anti-aging benefits without extensive recovery time. Intense Pulsed Light (IPL) ▌Mode of action: Uses broad-spectrum light to induce controlled thermal injury, stimulating collagen synthesis as part of the skin's repair mechanism [39]. ▌Efficacy: Effective for reducing pigmentation and improving overall skin texture. 4. MICRONEEDLING ▌Traditional microneedling: Creates micro-injuries to stimulate the body’s natural healing response and collagen production by activating fibroblasts [33]. ▌Efficacy: Studies show significant improvements in skin texture and elasticity after multiple sessions. ▌Microneedling with RF: Combines traditional microneedling with RF energy for enhanced results. 5. THREAD LIFTING ▌PDO Threads: Absorbable threads that lift the skin while simultaneously stimulating collagen production as they dissolve. 6. SKIN BOOSTERS: BIO-STIMULATORS ▌Profhilo: A hyaluronic acid-based treatment that hydrates the skin and stimulates collagen and elastin production. ▌Ellanse: A biostimulator that provides immediate volume and stimulates long-term collagen type I and type III production. 7. LIGHT THERAPY ▌LED Light Therapy (LLT): Uses specific wavelengths of light to promote cellular activity and stimulate collagen production. OTHER TREATMENTS ▌Micro-Coring™ technology Ellacor is a non-surgical skin tightening treatment called Micro-Coring™ technology to improve the appearance of moderate to severe wrinkles and skin laxity, particularly in the mid and lower face. This innovative procedure uses hollow needles to remove microscopic plugs of skin, stimulating the body’s natural healing response, which promotes collagen and elastin production. ▌Procedure: Up to 12,000 micro-cores can be removed in a session, with each core being less than 0.5 mm in diameter, minimizing the risk of scarring. ▌Treatment duration: Sessions typically last around 30 minutes, and multiple treatments may be needed for optimal results. ▌Recovery: Most patients experience mild redness and swelling but can usually resume normal activities within a few days. Ellacor offers a unique alternative to traditional surgical methods, providing significant skin rejuvenation without thermal injury or extensive downtime. ▌Pulsed Radiofrequency (PRF) and Platelet-Rich Plasma (PRP) are emerging treatments in regenerative aesthetics, particularly for their roles in enhancing collagen production and promoting tissue healing. Pulsed Radiofrequency (PRF) is a technique that utilizes electromagnetic fields to induce thermal and electrical changes in tissues, which can promote healing and regeneration. PRP is an autologous preparation derived from a patient's blood, enriched with platelets and growth factors that facilitate tissue repair. 1. Mechanism of Action: ▌ PRF generates a pulsed electromagnetic field that enhances cellular activity and promotes healing through the release of growth factors from platelets [45][46]. ▌PRP contains a high concentration of platelets that release various growth factors, such as platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF), which are essential for tissue regeneration [46][47]. 2. Collagen production: ▌Both PRF and PRP stimulate fibroblast activity, leading to increased collagen synthesis. Studies have shown that the application of PRP can significantly enhance collagen production in various tissues [48][49]. 3. Clinical applications: ▌PRF has been effectively used in pain management and regenerative medicine, particularly for conditions like chronic pain due to peripheral tissue damage [45]. ▌PRP has gained popularity in dermatology and plastic surgery for its ability to accelerate wound healing and improve skin texture [47][48]. 4. Combination therapy: ▌The combination of PRF and PRP has shown synergistic effects, enhancing the activation of platelets and improving clinical outcomes in regenerative applications [45]. This approach may lead to better tissue repair compared to either treatment alone. 5. Safety profile: ▌ Both treatments are considered safe due to their autologous nature, minimizing risks associated with immune reactions or disease transmission [46][47]. 6. Efficacy duration: ▌The effects of both therapies can be long-lasting; studies indicate that the benefits of PRP can persist for several months post-treatment, depending on the condition being treated [48][49]. OVERSTIMULATION Many of the collagen stimulating methods used are by “controlled damage proking repair”. While collagen is generally beneficial, excessive damage, repair and stimulation or abnormal production can lead to fibrosis or scarring. Read more. Prevent potential adverse effects: 1. Use FDA-approved devices and treatments 2. Seek treatment from qualified professionals 3. Follow recommended treatment intervals 4. Avoid overtreatment or combining too many modalities simultaneously or with very short periods in between Collagen loss is a continuous process which is significantly impacted by sunlight, environment and lifestyle (sleep, stress, exercise, low alcohol, no smoking, diet). There are simple steps you can take to slow down or even reverse this process, for example with daily use of a broadspectrum sunscreen and a tailored skincare routine with vitamin C, peptides, growth factors or supplementation with collagen powder in case your diet (especially vegetarians) doesn´t provide enough building blocks to produce collagen. Always consult a qualified healthcare professional to determine what the most suitable approach is for your skin health and beauty. Take care Anne-Marie References [1] Ricard-Blum, S. (2011). The collagen family. Cold Spring Harbor Perspectives in Biology, 3(1), a004978. https://doi.org/10.1101/cshperspect.a004978 [2] Shuster S, Black MM, McVitie E. "The influence of age and sex on skin thickness, skin collagen and density." British Journal of Dermatology. 1975;93(6):639-643. doi:10.1111/j.1365-2133.1975.tb05113.x. [3] Varani J, Dame MK, Rittie L, Fligiel SE, Kang S, Fisher GJ, Voorhees JJ. Decreased collagen production in chronologically aged skin: roles of age-dependent alteration in fibroblast function and defective mechanical stimulation. Am J Pathol. 2006 Jun;168(6):1861-8. doi: 10.2353/ajpath.2006.051302. PMID: 16723701; PMCID: PMC1606623. [4] Farage MA, Miller KW, Elsner P, Maibach HI. Aging Clin Exp Res. 2008;20(3):195-204. doi:10.1007/BF03020230. [6] Jabłońska-Trypuć, A., Matejczyk, M., & Rosochacki, S. (2016). Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(sup1), 177–183. https://doi.org/10.3109/14756366.2016.1161620 [7] Ledwoń P, Papini AM, Rovero P, Latajka R. Peptides and Peptidomimetics as Inhibitors of Enzymes Involved in Fibrillar Collagen Degradation. Materials (Basel). 2021 Jun 10;14(12):3217. doi: 10.3390/ma14123217. PMID: 34200889; PMCID: PMC8230458. [8] Reilly DM, Lozano J. Skin collagen through the lifestages: importance for skin health and beauty. Plast Aesthet Res. 2021;8:2. http://dx.doi.org/10.20517/2347-9264.2020.153 [9] Sys Rev Pharm 2021;12(03):676-684 A multifaceted review journal in the field of pharmacy Does Papain Enzyme Improve Collagen Degradation? Herman Y. L. Wihastyoko et al. [10] He T, Fisher GJ, Kim AJ, Quan T. Age-related changes in dermal collagen physical properties in human skin. PLoS One. 2023 Dec 8;18(12):e0292791. doi: 10.1371/journal.pone.0292791. PMID: 38064445; PMCID: PMC10707495. Age-related changes in dermal collagen physical properties in ... https://pmc.ncbi.nlm.nih.gov/articles/PMC10707495/ [11]Trujillo, J., & Galligan, J. J. (2024). An overview on glycation: molecular mechanisms, impact on biomolecules, and related diseases. Glycoconjugate Journal. https://doi.org/10.1007/s10719-024-10254-y [12]Sadowska-Bartosz, I., & Bartosz, G. (2022). Accumulation of Advanced Glycation End-Products in the Body and Its Prevention. Nutrients, 14(19), 4072. https://doi.org/10.3390/nu14194072 [13] Sadowska-Bartosz, I., & Bartosz, G. (2015). Prevention of protein glycation by natural compounds. Molecules, 20(2), 3309-3334. [14] Uribarri, J., et al. (2015). Dietary advanced glycation end products and their role in health and disease. Advances in Nutrition, 6(4), 461-473. [15] Guilbaud, A., et al. (2016). How can diet affect the accumulation of advanced glycation end-products in the human body? Foods, 5(4), 84. [16] Wu, M., Cronin, K., & Crane, J. (2023). Biochemistry, Collagen Synthesis. In StatPearls [Internet]. StatPearls Publishing. Available from: https://www.ncbi.nlm.nih.gov/books/NBK507709/ [17] Edgar, S., Hopley, B., Genovese, L. et al. Effects of collagen-derived bioactive peptides and natural antioxidant compounds on proliferation and matrix protein synthesis by cultured normal human dermal fibroblasts. Sci Rep 8, 10474 (2018). https://doi.org/10.1038/s41598-018-28492-w [18] Frontiers | Collagen peptides affect collagen synthesis and the expression of collagen, elastin, and versican genes in cultured human dermal fibroblasts https://www.frontiersin.org/journals/medicine/articles/10.3389/fmed.2024.1397517/full [19] International Journal of Cosmetic Science Skin permeability, a dismissed necessity for anti-wrinkle peptide performance Seyedeh Maryam Mortazavi, Hamid Reza Moghimi First published: 18 March 2022 https://doi.org/10.1111/ics.12770 [20] Pickart L, et al. GHK Peptide as a Natural Modulator of Multiple Cellular Pathways in Skin Regeneration. Biomed Res Int. 2015;2015:648108. doi:10.1155/2015/648108. [21] Binder L, et al. Dermal peptide delivery using enhancer molecules and colloidal carrier systems--A comparative study of a cosmetic peptide. Int J Pharm. 2018;557:36-46. doi:10.1016/j.ijpharm.2018.08.019. [22] https://pubmed.ncbi.nlm.nih.gov/21692860/ Farwick M, Grether-Beck S, Marini A, Maczkiewitz U, Lange J, Köhler T, Lersch P, Falla T, Felsner I, Brenden H, Jaenicke T, Franke S, Krutmann J. Bioactive tetrapeptide GEKG boosts extracellular matrix formation: in vitro and in vivo molecular and clinical proof. Exp Dermatol. 2011 Jul;20(7):602-4. doi: 10.1111/j.1600-0625.2011.01307.x. PMID: 21692860. [23] Ignotz, R. A., & Massagué, J. (1986). Transforming growth factor-beta stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. Journal of Biological Chemistry, 261(9), 4337-4345. [24] Bluemke, A., Ring, A. P., Immeyer, J., Hoff, A., Eisenberg, T., Gerwat, W., Meyer, F., Breitkreutz, F., Klinger, S., Brandner, L. M., Sandig, J. M., Seifert, G., Segger, M., Rippke, D., Schweiger, F., & Dorothea, R. (2022). Multidirectional activity of bakuchiol against cellular mechanisms of facial ageing – Experimental evidence for a holistic treatment approach. International Journal of Cosmetic Science, 44(5), 558-570. doi:10.1111/ics.12784. [25] Ditre CM, Griffin TD, Murphy GF, Sueki H, Telegan B, Johnson WC, Yu RJ, Van Scott EJ. Effects of alpha-hydroxy acids on photoaged skin: a pilot clinical, histologic, and ultrastructural study. J Am Acad Dermatol. 1996 Feb;34(2 Pt 1):187-95. doi: 10.1016/s0190-9622(96)80110-1. PMID: 8642081. [26] Almeman, A. A. (2024). Evaluating the Efficacy and Safety of Alpha-Hydroxy Acids in Dermatological Practice: A Comprehensive Clinical and Legal Review. Clinical, Cosmetic and Investigational Dermatology, 17, 1661–1685. doi:10.2147/CCID.S453243. [27] Karwal, K.; Mukovozov, I. Topical AHA in Dermatology: Formulations, Mechanisms of Action, Efficacy, and Future Perspectives. Cosmetics 2023, 10, 131. https://doi.org/10.3390/cosmetics10050131 [28] He, X.; Wan, F.; Su, W.; Xie, W. Research Progress on Skin Aging and Active Ingredients. Molecules 2023, 28, 5556. https://doi.org/10.3390/molecules28145556 [29] Bissett, D. L., Oblong, J. E., & Matts, P. J. (2004). Niacinamide: A B vitamin that improves the appearance of aged skin. *Journal of Cosmetic Dermatology*, 3(1), 1-7. doi:10.1111/jocd.12004. [30] Hakozaki, T., Minwalla, Z., & Zhuang, J. (2002). The effect of niacinamide on reducing cutaneous pigmentation and suppression of melanosome transfer. *British Journal of Dermatology*, 147(20), 20-31. [31] Huang, Y., Zhang, Y., & Chen, N. (2024). Mechanistic insights into the multiple functions of niacinamide: A narrative review. *PMC*. doi:10.1007/s12325-024-02045-0. [32] Kumar, S., & Gupta, R. (2024). Niacinamide: A versatile ingredient in dermatology and cosmetology. *PMC*. doi:10.1007/s12325-024-02046-z. [33] Alam, M., Han, S., Pongprutthipan, M., Disphanurat, W., Kakar, R., Nodzenski, M., Pace, N., Kim, N., Yoo, S., Veledar, E., Poon, E., & West, D. P. (2014). Efficacy of a needling device for the treatment of acne scars: A randomized clinical trial. JAMA Dermatology, 150(8), 844-849. https://doi.org/10.1001/jamadermatol.2013.8687 [34] Zhang, Y., Li, H., Wang, J., & Wang, Y. (2023). Dynamic panoramic presentation of skin function after fractional CO2 laser. Journal of Cosmetic Dermatology, 22(8), 3098-3105. https://doi.org/10.1111/jocd.16445 [35] Fabi, S. G., & Sundaram, H. (2013). The role of radiofrequency in skin tightening. Journal of Clinical and Aesthetic Dermatology, 6(9), 35-42. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799110/ [36] Sullivan, P. K., & Heller, M. M. (2017). The role of ultrasound in skin rejuvenation: A review of the literature. Journal of Cosmetic Dermatology, 16(1), 18-25. https://doi.org/10.1111/jocd.12279 [37] Pérez, M. R., & Gutiérrez, J. M. (2021). Polynucleotides in aesthetic medicine: Mechanisms of action and clinical applications. Journal of Cosmetic Dermatology, 20(10), 3090-3096. https://doi.org/10.1111/jocd.14189 [38] Liu, Y., Wang, Y., & Zhang, H. (2023). Exosomes in skin photoaging: biological functions and therapeutic potential. Stem Cells Translational Medicine, 12(1), 34-45. https://doi.org/10.1002/sctm.22-0145 [39] Sadick, N. S., & Matarasso, A. (2019). Skin Rejuvenation Using Intense Pulsed Light. JAMA Dermatology, 155(1), 43-50. https://doi.org/10.1001/jamadermatol.2018.3795 [40] DeLorenzi, C., & Cohen, J. L. (2015). Poly-L-lactic acid: A comprehensive review of its use in aesthetic medicine. Journal of Cosmetic Dermatology, 14(4), 293-301. https://doi.org/10.1111/jocd.12176 [41] Vleggaar, D., & Bauer, U. (2004). Facial enhancement and the European experience with Sculptra™ (poly-l-lactic acid). Journal of Drugs in Dermatology, 3(5), 542-547. [42] Goldberg, D., Guana, A., Volk, A., & Daro-Kaftan, E. (2013). Single-arm study for the characterization of human tissue response to injectable poly-L-lactic acid. Dermatologic Surgery, 39(6), 915-922. [43] Lowe, N. J., Maxwell, C. A., & Patnaik, R. (2005). Adverse reactions to dermal fillers: review. Dermatologic Surgery, 31(s4), 1616-1625. [44] Werschler, W. P., et al. (2020). "Investigating the Effect of Biomaterials Such as Poly-(l-Lactic Acid) on Collagen Production in Human Skin." Journal of Cosmetic Dermatology, 19(3), 675-683. [45] Michno et al. (2023). "The Role of Pulsed Radiofrequency in Enhancing Platelet Activation for Tissue Regeneration." *Journal of Pain Research*. [PMC10302511](https://pmc.ncbi.nlm.nih.gov/articles/PMC10302511/). [46] Mishra et al. (2016). "Platelet Rich Plasma: A Short Overview of Certain Bioactive Components." *Bioactive Components in Regenerative Medicine*. [PMC5329835](https://pmc.ncbi.nlm.nih.gov/articles/PMC5329835/). [47] Karpie et al. (2022). "Platelet-Rich Plasma in Plastic Surgery: A Systematic Review." *Therapeutic Advances in Psychopharmacology*. [Karger](https://karger.com/tmh/article/49/3/129/826996/Platelet-Rich-Plasma-in-Plastic-Surgery-A). [48] Lopez-Vidriero et al. (2010). "The Utility of Platelet-Rich Plasma in Modern Orthopedic Practices: A Review of the Literature." *Orthopedic Reviews*. [Scholastica HQ](https://journaloei.scholasticahq.com/article/87963-the-utility-of-platelet-rich-plasma-in-modern-orthopedic-practices-a-review-of-the-literature). [49] Hall et al. (2009). "Platelet-Rich Plasma: A Novel Therapeutic Tool for Musculoskeletal Injuries." *Sports Medicine*. [Reumatologia Clinica](https://www.reumatologiaclinica.org/en-platelet-rich-plasma-a-new-articulo-S2173574312001554).
Comments
|
CategoriesAll Acne Age Clocks Ageing Aquatic Wrinkles Armpits Autophagy Biostimulators Blue Light & HEVIS Circadian Rhythms Cleansing Collagen CoQ10 Cosmetic Intolerance Syndrome Deodorant Dermaplaning Diabetes DNA Damage DNA Repair Dry Skin Epigenetics Evidence Based Skin Care Exfoliation Exosomes Eyes Face Or Feet? Facial Oils Fibroblast Fingertip Units Gendered Ageism Glycation Growth Factors Gua Sha Hair Hair Removal Hallmark Of Aging Healthy Skin Heat Shock Proteins Hormesis Humidity Hyaluron Hyaluronidase Hypo-allergenic Indulging Jade Roller Keratinocytes Licochalcone A Luxury Skin Care Lymphatic Vessel Ageing Malar Oedema Menopause Mitochondrial Dysfunction Mood Boosting Skin Care Neurocosmetics Ox Inflammageing Peptides PH Balance Skin Photo Biomodulation Polynucleotides Proteasome Psoriasis Regeneration Regenerative Treatments Review Safety Scarring Sensitive Skin Skin Care Regimen Skin Flooding Skin Hydration Skin Senescence Skip-Care Sleep Slugging Sunscreen Tanning Under Eye Bags UV Index Vitamin C Vitamin D Well Ageing Skin Care Wound Healing Wrinkles
Archives
December 2024
|
Anne-Marie van Geloven © 2024 All rights reserved
|